v1= kecepatan benda 1 sebelum tumbukan (m/s) v2 = kecepatan benda 2 sebelum tumbukan (m/s) v1' = kecepatan benda 1 sesudah tumbukan (m/s) v2' = kecepatan benda 2 sesudah tumbukan (m/s) e = koefisien restitusi v2' = kecepatan benda 2 sesudah tumbukan (m/s) e = koefisien restitusi Keterangan: v ' = kecepatan benda setelah tumbukan (m
Sebagian dari kalian pasti tahu dong bahwa Indonesia pernah meluncurkan sebuah roket dan mengorbitkan satelitnya di luar angkasa. Dalam prinsip peluncuran roket tersebut, digunakan teori Hukum Kekekalan Momentum, dimana besar momentum yang dihasilkan gaya dorong oleh bahan bakar sama dengan momentum meluncurnya roket. Lalu apa itu hukum kekekalan momentum? Konsep momentum memiliki peranan penting dalam fisika, hukum kekekalan momentum menjelaskan bahwa jika dua buah benda bertumbukan maka besar penurunan momentum pada salah satu benda akan bernilai sama dengan besar peningkatan momentum pada benda lainnya. Ini berarti, total momentum sistem benda sebelum tumbukan selalu sama dengan total momentum sistem benda setelah tumbukan. Secara matematis, hukum kekekalan momentum dapat ditulisakan sebagai berikut m1v1 + m2v2 = m1v1 + m2 v2 keterangan m1 adalah massa benda 1 m2 adalah massa benda 2 v1 adalah kecepatan benda 1 sebelum tumbukan v2 adalah kecepatan benda 2 sebelum tumbukan v1 adalah kecepatan benda 1 setelah tumbukan v2 adalah kecepatan benda 2 setelah tumbukan Hukum kekekalan momentum ternyata berlaku pada semua sistem yang terdiri atas dua benda ataupun lebih yang berinteraksi satu sama lain. Hal ini berlaku selama tidak ada gaya dari luar sistem atau resultan gaya dari luar sistem sama dengan nol. Kendati demikian, hukum ini tidak berlaku pada gerak balok di atas permukaan yang kasar dan pada gerak mobil yang dipercepat atau diperlambat. Baca juga Hukum Perbandingan Tetap Dalam Kimia Sedangkan pada prinsip roket seperti yang dicontohkan diatas, prinsip terdorongnya roket memenuhi hukum kekekalan momentum. Pada keadaan mula-mula sistem dalam hal ini roket dan bahan bakar diam, sehingga momentumnya sama dengan nol. Sesudah gas menyembur keluar dari roket, momentum sistem tetap sehingga momentum sistem sebelum dan sesudah gas keluar adalah sama. Berdasarkan hukum ini. kecepatan akhir yang dapat dicapai sebuah roket bergantung pada banyaknya bahan bakar yang dapat dibawa oleh roket dan kelajuan pancaran gas. Pada dasarnya kedua besaran ini terbatas, sehingga digunakanlah roket-roket bertahap multistage rockets yaitu, beberapa roket yang digabung bersama, begitu bahan bakar tahap pertama telah dibakar habis maka roket ini dilepaskan. Dalam kehidupan sehari-hari, asas gaya dorong roket juga dimanfaatkan oleh cumi-cumi dan gurita. Dimana hewan tersebut bergerak seperti pada roket meneguk air dan mengeluarkannya dengan kecepatan yang tinggi dan memungkinkan untuk bergerak lebih cepat dalam air Please follow and like us Kelas Pintar adalah salah satu partner Kemendikbud yang menyediakan sistem pendukung edukasi di era digital yang menggunakan teknologi terkini untuk membantu murid dan guru dalam menciptakan praktik belajar mengajar terbaik. Related TopicsFisikaHukum Kekekalan MomentumKekekalan MomentumKelas 10MomentumRoket You May Also Like HukumPertama: setiap benda akan memiliki kecepatan yang konstan kecuali ada gaya yang resultannya tidak nol bekerja pada benda tersebut.[3][4][5] Berarti jika resultan gaya nol, maka pusat massa dari suatu benda tetap diam, atau bergerak dengan kecepatan konstan (tidak mengalami percepatan). Hal ini berlaku jika dilihat dari kerangka acuan Pembahasan Soal MIPA , Baik dari segi perhitungan serta rumus singkatnya, sangatlah dibutuhkan untuk membantu dalam menyelesaikan permasalahan yang dihadapi oleh setiap dari siswa itu kurang menyukainya karena mereka menganggapnya sangatlah rumit dan susah dengan berbagai rumus yang ada. Dan jika kita lihat dari sisi yang positif, MIPA -Matemarika dan csnya jika kita nalar dari segi logika sebenarnya sangatlagh mudah. Dan kita tidak perlu menghapal rumusnya. Sebab pada dasarnya MIPA meruapakan ilmu pasti yang memang sudah di tentukan dan di golongkan solusi dari permasalahan yang ada,.Trik Menyukai MIPA kita jangan anggap MIPA itu pelajaran yang membosankan,dan susah, saat belajar MIPA kita hubungankan dengan dengan kehidupan sehari-hari, belajar MIPA bisa kita buat ke sebuah cerita yang menarikPembahasan soal tumbukan 1. Soal UN 2000/2001 Soal EBTANAS Fisika SMA Tahun 2001 No. 2 Dua benda A 3 kg dan B 5 kg bergerak searah dengan kecepatan masing-masing 8 ms–1 dan 4 ms–1 . Apabila benda A menumbuk benda B secara lenting sempurna, maka kecepatan masing-masing benda sesudah tumbukan adalah….. A. 3 ms –1 dan 7 ms –1 B. 6 ms –1 dan 10 ms –1 C. 4,25 ms –1 dan 10 ms –1 D. 5,5 ms –1 dan 5,5 ms –1 E. 8 ms –1 dan 4 ms –1 Pembahasan Diketahui Massa benda A m1 = 3 kg Massa benda B m2 = 5 kg Kecepatan benda A v1 = 8 ms–1 Kecepatan benda B v2 = 4 ms–1 Tumbukan lenting sempurna Ditanya v1 dan v2 Jawab Jika benda-benda yang bertumbukan lenting sempurna mempunyai massa berbeda dan kelajuan kedua benda setelah bertumbukan tidak diketahui maka kelajuan setelah tumbukan dihitung menggunakan persamaan berikut Kedua benda bergerak searah sehingga kecepatan kedua benda bertanda positif. Jika kedua benda bergerak berlawanan arah maka salah satu kecepatan benda bertanda positif dan kecepatan benda lainnya bertanda negatif. Jadi kecepatan benda A v1 setelah tumbukan adalah 3 m/s dan kecepatan benda B v2 setelah tumbukan adalah 7 m/s. Jawaban yang benar adalah A. 2. Soal UN 2002/2003 Sebuah bola yang mempunyai momentum P menumbuk dinding dan memantul. Tumbukan bersifat lenting sempurna dan arahnya tegak lurus. Besar perubahan momentum bola adalah … A. nol B. p/4 C. p/4 D. P E. 2P Pembahasan Diketahui Massa bola = m Kecepatan bola sebelum tumbukan = v Kecepatan bola setelah tumbukan = -v bola memantul ke kiri Momentum bola sebelum tumbukan po = m v Momentum bola setelah tumbukan pt = m -v = – m v Ditanya Besar perubahan momentum bola Jawab Perubahan momentum Δp = pt – po Δp = – m v – m v Δp = – 2 m v Δp = -2p Besar perubahan momentum bola adalah 2p. Tanda negatif menunjukkan arah. Jawaban yang benar adalah E. 3. Soal UN 2003/2004 Dua buah benda A dan B yang bermassa sama bergerak saling berpapasan. A bergerak ke Timur dan B ke Barat, masing-masing dengan kecepatan V dan 2V. Apabila benda tersebut mengalami tumbukan lenting sempurna, maka sesaat setelah tumbukan adalah … A. VA = V ke Barat, VB = V ke Timur B. VA = 2V ke Barat, VB = 2V ke Timur C. VA = 2V ke Barat, VB = V ke Timur D. VA = V ke Barat, VB = 2V ke Timur E. VA = 2V ke Timur, VB = V ke Barat Pembahasan Diketahui Kedua benda bermassa sama. A bergerak ke timur dengan kecepatan V B bergerak ke barat dengan kecepatan 2V Ditanya Kecepatan A dan B setelah tumbukan Jawab Jika massa kedua benda sama dan kedua benda bertumbukan lenting sempurna, maka kedua benda bertukar kecepatan setelah tumbukan. Jadi setelah tumbukan, A bergerak ke barat dengan kecepatan 2V dan B bergerak ke timur dengan kecepatan V. Jawaban yang benar adalah C. Tumbukan Lenting Tidak Sempurna 6. Soal UN 2008/2009 P12 No 13 Dua buah benda bermassa sama bergerak pada satu garis lurus saling mendekati seperti pada gambar! Jika v2 adalah kecepatan benda 2 setelah tumbukan ke kanan dengan laju 5 maka besar kecepatan v1 1 setelah tumbukan adalah….. A. 7 B. 9 C. 13 D. 15 E. 17 Pembahasan Diketahui Massa kedua benda sama = m Kecepatan benda 1 sebelum tumbukan v1 = 8 m/s Kecepatan benda 2 sebelum tumbukan v2 = 10 m/s Kecepatan benda 2 setelah tumbukan v2 = 5 m/s Ditanya Kecepatan benda 1 setelah tumbukan v1 Jawab Ini adalah tumbukan lenting tidak sempurna. v1 dihitung menggunakan hukum kekekalan momentum m1 v1+ m2 v2 = m1 v1’ + m2 v2’ m v1 + v2 = m v1’ + v2’ v1 + v2 = v1’ + v2’ 8 + 10 = v1’ + 5 18 = v1’ + 5 v1’ = 18-5 v1’ = 13 m/s Jawaban yang benar adalah C. Tumbukan Tidak Lenting 8. Soal UN 1999/2000 Sebuah peluru massa 10 gram meluncur dengan kecepatan 100 m s-1 , menumbuk balok kayu yang diam dan bersarang di dalamnya. Jika massa balok kayu 490 gram, kecepatan balok kayu dan peluru sesaat setelah tumbukan adalah … A. 1,0 m s-1 B. 2,0 m s-1 C. 2,5 m s-1 D. 4,0 m s-1 E. 5,0 m s-1 Pembahasan Diketahui Massa peluru m1 = 10 gram Kecepatan peluru v1 = 100 m s-1 Massa balok m2 = 490 gram Kecepatan balok v2 = 0 m/s balok diam Ditanya Kecepatan balok kayu dan peluru sesaat setelah tumbukan Jawab Peluru menumbuk balok kayu yang diam dan bersarang di dalamnya, sehingga ini merupakan tumbukan tidak lenting. Rumus tumbukan tidak lenting Momentum sebelum tumbukan = momentum setelah tumbukan m1 v1 + m2 v2 = m1 + m2 v’ 10100 + 4900 = 10 + 490 v’ 1000 + 0 = 500 v’ 1000 =500 v’ v’ = 1000 / 500 v’ = 2 m/s = 2 m s-1 Jawaban yang benar adalah B. 9. Soal UN 2006/2007 Sebuah truk yang sedang bergerak dengan kecepatan 10 ms–1 ditabrak oleh sebuah mobil yang sedang berjalan dengan kecepatan 20 ms–1. Setelah tabrakan kedua mobil itu berpadu satu sama lain. Jika massa truk 1400 kg dan massa mobil 600 kg, kecepatan kedua kendaraan setelah tabrakan adalah … A. 6 ms–1 B. 9 ms–1 C. 11 ms–1 D. 13 ms–1 E. 17 ms–1 Pembahasan Setelah tabrakan kedua mobil itu berpadu satu sama lain karenanya merupakan tumbukan tidak lenting. Diketahui Kecepatan truk v1 = 10 m/s Kecepatan mobil v2 = 20 m/s Massa truk m1 = 1400 kg Massa mobil m2 = 600 kg Ditanya kecepatan kedua kendaraan setelah tabrakan v Jawab Rumus tumbukan tidak lenting m1 v1 + m2 v2 = m1 + m2 v 140010 + 60020 = 1400 + 600 v 14000 + 12000 = 2000 v 26000 = 2000 v v = 13 m/s Jawaban yang benar adalah D. 10. Soal UN 2009/2010 P37 Sebutir peluru 20 gram bergerak dengan kecepatan 10 ms-1 arah mendatar menumbuk balok bermassa 60 gram yang sedang diam di atas lantai. Jika peluru tertahan di dalam balok, maka kecepatan balok sekarang adalah…. A. 1,0 ms-1 B. 1,5 ms-1 C. 2,0 ms-1 D. 2,5 ms-1 E. 3,0 ms-1 Pembahasan Diketahui Massa peluru mP = 20 gram = 0,02 kg Massa balok mB = 60 gram = 0,06 kg Kecepatan awal peluru vP = 10 m/s Kecepatan awal balok vB = 0 Ditanya kecepatan peluru dan balok setelah bertumbukan v’ Jawab Rumus hukum kekekalan momentum jika kedua benda menyatu setelah tumbukan mP vP + mB vB = mP + mB v’ 0,0210 + 0,060 = 0,02 + 0,06 v’ 0,2 + 0 = 0,08 v’ 0,2 = 0,08 v’ v’ = 0,2 / 0,08 v’ = 2,5 m/s Jawaban yang benar adalah D. 11. Soal UN 2010/2011 P25 Dua troli A dan B masing-masing 1,5 kg bergerak saling mendekat dengan vA = 4 dan vB = 5 seperti pada gambar. Jika kedua troli bertumbukan tidak lenting sama sekali, maka kecepatan kedua troli sesudah bertumbukan adalah … A. 4,5 ke kanan B. 4,5 ke kiri C. 1,0 ke kiri D. 0,5 ke kiri E. 0,5 ke kanan Pembahasan Diketahui Massa troli A mA = 1,5 kg Massa troli B mB = 1,5 kg Kecepatan troli A sebelum tumbukan vA = 4 m/s positif ke kanan Kecepatan troli B sebelum tumbukan vB = -5 m/s negatif ke kiri Ditanya Jika tumbukan tidak lenting, tentukan kecepatan kedua troli setelah tumbukan Jawab Hukum kekekalan momentum mAvA + mBvB = mA + mB v’ 1,54 + 1,5-5 = 1,5 + 1,5 v’ 6 – 7,5 = 3 v’ -1,5 = 3 v’ v’ = -1,5 / 3 v’ = -0,5 m/s Tanda negatif artinya setelah tumbukan keduanya bergerak ke kiri, searah dengan troli B. Hal ini masuk akal karena momentum troli B lebih besar daripada momentum troli A. Momentum, Impuls, Tumbukan KB Pembahasan soal tumbukan 1. Soal UN 2000/2001 Soal EBTANAS Fisika SMA Tahun 2001 No. 2 Dua benda A 3 kg dan B 5 kg bergerak searah dengan kecepatan masing-masing 8 ms–1 dan 4 ms–1 . Apabila benda A menumbuk benda B secara lenting sempurna, maka kecepatan masing-masing benda sesudah tumbukan adalah….. A. 3 ms –1 dan 7 ms –1 B. 6 ms –1 dan 10 ms –1 C. 4,25 ms –1 dan 10 ms –1 D. 5,5 ms –1 dan 5,5 ms –1 E. 8 ms –1 dan 4 ms –1 Pembahasan Diketahui Massa benda A m1 = 3 kg Massa benda B m2 = 5 kg Kecepatan benda A v1 = 8 ms–1 Kecepatan benda B v2 = 4 ms–1 Tumbukan lenting sempurna Ditanya v1 dan v2 Jawab Jika benda-benda yang bertumbukan lenting sempurna mempunyai massa berbeda dan kelajuan kedua benda setelah bertumbukan tidak diketahui maka kelajuan setelah tumbukan dihitung menggunakan persamaan berikut Kedua benda bergerak searah sehingga kecepatan kedua benda bertanda positif. Jika kedua benda bergerak berlawanan arah maka salah satu kecepatan benda bertanda positif dan kecepatan benda lainnya bertanda negatif. Jadi kecepatan benda A v1 setelah tumbukan adalah 3 m/s dan kecepatan benda B v2 setelah tumbukan adalah 7 m/s. Jawaban yang benar adalah A. 2. Soal UN 2002/2003 Sebuah bola yang mempunyai momentum P menumbuk dinding dan memantul. Tumbukan bersifat lenting sempurna dan arahnya tegak lurus. Besar perubahan momentum bola adalah … A. nol B. p/4 C. p/4 D. P E. 2P Pembahasan Diketahui Massa bola = m Kecepatan bola sebelum tumbukan = v Kecepatan bola setelah tumbukan = -v bola memantul ke kiri Momentum bola sebelum tumbukan po = m v Momentum bola setelah tumbukan pt = m -v = – m v Ditanya Besar perubahan momentum bola Jawab Perubahan momentum Δp = pt – po Δp = – m v – m v Δp = – 2 m v Δp = -2p Besar perubahan momentum bola adalah 2p. Tanda negatif menunjukkan arah. Jawaban yang benar adalah E. 3. Soal UN 2003/2004 Dua buah benda A dan B yang bermassa sama bergerak saling berpapasan. A bergerak ke Timur dan B ke Barat, masing-masing dengan kecepatan V dan 2V. Apabila benda tersebut mengalami tumbukan lenting sempurna, maka sesaat setelah tumbukan adalah … A. VA = V ke Barat, VB = V ke Timur B. VA = 2V ke Barat, VB = 2V ke Timur C. VA = 2V ke Barat, VB = V ke Timur D. VA = V ke Barat, VB = 2V ke Timur E. VA = 2V ke Timur, VB = V ke Barat Pembahasan Diketahui Kedua benda bermassa sama. A bergerak ke timur dengan kecepatan V B bergerak ke barat dengan kecepatan 2V Ditanya Kecepatan A dan B setelah tumbukan Jawab Jika massa kedua benda sama dan kedua benda bertumbukan lenting sempurna, maka kedua benda bertukar kecepatan setelah tumbukan. Jadi setelah tumbukan, A bergerak ke barat dengan kecepatan 2V dan B bergerak ke timur dengan kecepatan V. Jawaban yang benar adalah C. Tumbukan Lenting Tidak Sempurna 6. Soal UN 2008/2009 P12 No 13 Dua buah benda bermassa sama bergerak pada satu garis lurus saling mendekati seperti pada gambar! Jika v2 adalah kecepatan benda 2 setelah tumbukan ke kanan dengan laju 5 maka besar kecepatan v1 1 setelah tumbukan adalah….. A. 7 B. 9 C. 13 D. 15 E. 17 Pembahasan Diketahui Massa kedua benda sama = m Kecepatan benda 1 sebelum tumbukan v1 = 8 m/s Kecepatan benda 2 sebelum tumbukan v2 = 10 m/s Kecepatan benda 2 setelah tumbukan v2 = 5 m/s Ditanya Kecepatan benda 1 setelah tumbukan v1 Jawab Ini adalah tumbukan lenting tidak sempurna. v1 dihitung menggunakan hukum kekekalan momentum m1 v1+ m2 v2 = m1 v1’ + m2 v2’ m v1 + v2 = m v1’ + v2’ v1 + v2 = v1’ + v2’ 8 + 10 = v1’ + 5 18 = v1’ + 5 v1’ = 18-5 v1’ = 13 m/s Jawaban yang benar adalah C. Tumbukan Tidak Lenting 8. Soal UN 1999/2000 Sebuah peluru massa 10 gram meluncur dengan kecepatan 100 m s-1 , menumbuk balok kayu yang diam dan bersarang di dalamnya. Jika massa balok kayu 490 gram, kecepatan balok kayu dan peluru sesaat setelah tumbukan adalah … A. 1,0 m s-1 B. 2,0 m s-1 C. 2,5 m s-1 D. 4,0 m s-1 E. 5,0 m s-1 Pembahasan Diketahui Massa peluru m1 = 10 gram Kecepatan peluru v1 = 100 m s-1 Massa balok m2 = 490 gram Kecepatan balok v2 = 0 m/s balok diam Ditanya Kecepatan balok kayu dan peluru sesaat setelah tumbukan Jawab Peluru menumbuk balok kayu yang diam dan bersarang di dalamnya, sehingga ini merupakan tumbukan tidak lenting. Rumus tumbukan tidak lenting Momentum sebelum tumbukan = momentum setelah tumbukan m1 v1 + m2 v2 = m1 + m2 v’ 10100 + 4900 = 10 + 490 v’ 1000 + 0 = 500 v’ 1000 =500 v’ v’ = 1000 / 500 v’ = 2 m/s = 2 m s-1 Jawaban yang benar adalah B. 9. Soal UN 2006/2007 Sebuah truk yang sedang bergerak dengan kecepatan 10 ms–1 ditabrak oleh sebuah mobil yang sedang berjalan dengan kecepatan 20 ms–1. Setelah tabrakan kedua mobil itu berpadu satu sama lain. Jika massa truk 1400 kg dan massa mobil 600 kg, kecepatan kedua kendaraan setelah tabrakan adalah … A. 6 ms–1 B. 9 ms–1 C. 11 ms–1 D. 13 ms–1 E. 17 ms–1 Pembahasan Setelah tabrakan kedua mobil itu berpadu satu sama lain karenanya merupakan tumbukan tidak lenting. Diketahui Kecepatan truk v1 = 10 m/s Kecepatan mobil v2 = 20 m/s Massa truk m1 = 1400 kg Massa mobil m2 = 600 kg Ditanya kecepatan kedua kendaraan setelah tabrakan v Jawab Rumus tumbukan tidak lenting m1 v1 + m2 v2 = m1 + m2 v 140010 + 60020 = 1400 + 600 v 14000 + 12000 = 2000 v 26000 = 2000 v v = 13 m/s Jawaban yang benar adalah D. 10. Soal UN 2009/2010 P37 Sebutir peluru 20 gram bergerak dengan kecepatan 10 ms-1 arah mendatar menumbuk balok bermassa 60 gram yang sedang diam di atas lantai. Jika peluru tertahan di dalam balok, maka kecepatan balok sekarang adalah…. A. 1,0 ms-1 B. 1,5 ms-1 C. 2,0 ms-1 D. 2,5 ms-1 E. 3,0 ms-1 Pembahasan Diketahui Massa peluru mP = 20 gram = 0,02 kg Massa balok mB = 60 gram = 0,06 kg Kecepatan awal peluru vP = 10 m/s Kecepatan awal balok vB = 0 Ditanya kecepatan peluru dan balok setelah bertumbukan v’ Jawab Rumus hukum kekekalan momentum jika kedua benda menyatu setelah tumbukan mP vP + mB vB = mP + mB v’ 0,0210 + 0,060 = 0,02 + 0,06 v’ 0,2 + 0 = 0,08 v’ 0,2 = 0,08 v’ v’ = 0,2 / 0,08 v’ = 2,5 m/s Jawaban yang benar adalah D. 11. Soal UN 2010/2011 P25 Dua troli A dan B masing-masing 1,5 kg bergerak saling mendekat dengan vA = 4 dan vB = 5 seperti pada gambar. Jika kedua troli bertumbukan tidak lenting sama sekali, maka kecepatan kedua troli sesudah bertumbukan adalah … A. 4,5 ke kanan B. 4,5 ke kiri C. 1,0 ke kiri D. 0,5 ke kiri E. 0,5 ke kanan Pembahasan Diketahui Massa troli A mA = 1,5 kg Massa troli B mB = 1,5 kg Kecepatan troli A sebelum tumbukan vA = 4 m/s positif ke kanan Kecepatan troli B sebelum tumbukan vB = -5 m/s negatif ke kiri Ditanya Jika tumbukan tidak lenting, tentukan kecepatan kedua troli setelah tumbukan Jawab Hukum kekekalan momentum mAvA + mBvB = mA + mB v’ 1,54 + 1,5-5 = 1,5 + 1,5 v’ 6 – 7,5 = 3 v’ -1,5 = 3 v’ v’ = -1,5 / 3 v’ = -0,5 m/s Tanda negatif artinya setelah tumbukan keduanya bergerak ke kiri, searah dengan troli B. Hal ini masuk akal karena momentum troli B lebih besar daripada momentum troli A. Momentum, Impuls, Tumbukan KB Pembahasan soal ujian nasional UN fisika SMA/MA Download ebook pembahasan soal ujian nasional fisika Sekolah Menengah Atas SMA dan Madrasah Aliyah MA tahun 2012 dan 2013. Pada pembahasan soal UN fisika SMA/MA tahun 2012 terdapat dua tipe soal dan pada pembahasan soal UN fisika SMA/MA tahun 2013 terdapat tiga tipe soal. Pembahasan soal ditulis dalam format diketahui, ditanya dan dijawab untuk mempermudah anda mengidentifikasi besaran fisika yang diketahui, besaran fisika yang ditanyakan dan bagaimana proses penyelesaian soal tersebut. Pembahasan soal tidak hanya terdiri dari rumus-rumus dan angka-angka saja tetapi juga disertai dengan penjelasan untuk mempermudah pemahaman anda. Ukuran kertas A4 Jenis huruf Times New Roman Ukuran huruf 12 Jumlah halaman UN fisika SMA/MA tahun 2012 – 36 halaman, UN fisika SMA/MA tahun 2013 – 69 halaman Ebook Pembahasan Soal UN Fisika SMA/MA tahun 2012 409 kB Ebook Pembahasan Soal UN Fisika SMA/MA tahun 2013 1,1 MB
Jikav2' adalah kecepatan benda (2) setelah tumbukan ke kanan dengan laju 5 m.s-1, maka besar kecepatan v1 ' (1) setelah tumbukan adalah.. A. 7 m.s−1 B. 9 m.s−1 C. 13 m.s−1 D. 15 m.s−1 E. 17 m.s−1 Pembahasan Diketahui : Massa kedua benda sama = m Kecepatan benda 1 sebelum tumbukan (v1) = 8 m/s Kecepatan benda 2 sebelum tumbukan (v2) = 10 m/s
Momentum dalam bahasan fisika dapat diartikan sebagai jumlah gerak, atau dapat dikatakan sebagai besaran lain yang menyatakan gerak benda. Simbol momentum adalah p dan satuan momentum dinyatakan dalam kg⋅m/s kilogram meter per sekon atau dapat juga menggunakan satuan Ns Newton sekon. Definisi dari momentum suatu benda bergerak adalah hasil kali perkalian antara massa m dengan kecepatan benda v. Untuk perubahan momentum Δp dapat dinyatakan melalui persamaan impuls Δp = I = F ⋅ Δt. Hukum kekekalan momentum berlaku pada dua benda bertumbukan atau tabrakan yang mengalami lenting sempurna. Tumbukan dengan lenting sempurna terjadi apabila tidak ada energi yang hilang, di mana jumlah energi kinetik kedua benda sebelum dan sesudah tumbukan adalah sama. Hukum kekekalan momentum tidak berlaku jika jumlah gaya luar pada benda-benda yang bertumbukan tidak sama dengan nol. Bagaimana persamaan yang sesuai hukum momentum? Bagaimana persamaan tersebut dapat digunakan untuk menyelesaikan suatu permasalahan? Sobat idschool dapat mencari tahu jawabannya melalui ulasan di bawah. Table of Contents Bunyi dan Persamaan pada Hukum Kekekalan Momentum Contoh Soal dan Pembahasan Contoh 1 – Penggunaan Hukum Kekekalan Momentum Contoh 2 – Penggunaan Hukum Kekekalan Momentum Contoh 3 – Penggunaan Hukum Kekekalan Momentum Baca Juga Rumus Momentum dan Impuls Serta Hubungan Keduanya Bunyi dan Persamaan pada Hukum Kekekalan Momentum Dua benda yang masing- masing memiliki massa m1 dan m2 bergerak dengan arah kecepatan yang berlawanan pada suatu lintasan yang sama. Misalkan benda pertama bergerak dengan kecepatan v1 dan benda kedua bergerak dengan kecepatan v2. Kedua benda tersebut akan bertumbukan dan mengalami lenting elastis sempurna sehingga besar dan arah kecepatannya menjadi berubah. Apabila sistem yang mengalami tumbukan itu tidak mendapatkan gaya luar F = 0 maka perubahan momentum sama dengan nol Δp = 0 atau p = konstan. Atau dapat didapatkan bahwa jumlah momentum benda sebelum tumbukan sama dengan jumlah momentum benda setelah tumbukan. Kondisi tersebut memenuhi hukum kekekalan momentum. Bunyi hukum kekekalan momentumJika tidak ada gaya luar yang bekerja pada benda, maka jumlah momentum sebelum tumbukan sama dengan jumlah momentum setelah tumbukan. Secara matematis, hukum kekekalan momentum memenuhi persamaan seperti berikut. Bunyi hukum kekekalan momentum jika tidak ada gaya luar yang bekerja pada benda maka jumlah momentum sebelum tumbukan sama dengan jumlah momentum setelah tumbukan. KeteranganmA = massa benda AvA = kecepatan benda A sebelum tumbukanvA’ = kecepatan benda A setelah tumbukan mB = massa benda BvB = kecepatan benda B sebelum tumbukanvB’ = kecepatan benda B setelah tumbukan Selanjutnya, sobat idschool dapat melihat bagaimana persamaan hukum kekekalan momentum dapat digunakan untuk menyelesaikan suatu persoalan. Bahasan tersebut dapat dilihat melalui ulasan contoh soal hukum kekekalan momentum beserta pepmbahasannya di bawah. Baca Juga Pengertian Momentum dan Impuls, serta Hubungan Keduanya Contoh Soal dan Pembahasan Beberapa contoh soal di bawah dapat sobat idschool gunakan untuk mengukur pemahaman bahasan materi di atas. Setiap contoh soal yang diberikan dilengkapi dengan pembahasannya. Sobat idschool dapat menggunakan pembahasan tersebut sebagai tolak ukur keberhasilan mengerjakan soal. Selamat berlatih! Contoh 1 – Penggunaan Hukum Kekekalan Momentum Bola tanah liat yang bermassa 0,1 kg menumbuk kereta mainan yang massanya 0,9 kg yang berada dalam keadaan diam. Pada saat menumbuk, bola memiliki kecepatan 18 m/s dalam arah horizontal. Kecepatan kereta mainan setelah tumbukan adalah ….A. 200 m/sB. 180 m/sC. 18 m/sD. 16,2 m/sE. 1,8 m/s PembahasanBeberapa keterangan yang diberikan pada soal diperoleh beberapa informasi seperto berikut. Massa bola tanah liat m1 = 0,1 kgMassa kereta mainan m2 = 0,9 kgKecepatan kereta mainan diam v2 = 0 m/sKecepatan bola saat menumbuk v1 = 18 m/s Menghitung kecepatan bola tanah liat dan kereta mainan setelah tumbukan v2m1 v1 + m2 v2 = m1 + m2 v20,1 × 18 + 0,9 × 0 = 0,1 + 0,9v21,8 + 0 = v2v2 = 1,8 m/s Jadi, kecepatan kereta mainan setelah tumbukan adalah 1,8 m/ E Contoh 2 – Penggunaan Hukum Kekekalan Momentum Dua buah benda bermassa sama bergerak pada satu garis lurus saling mendekati seperti pada gambar. Diketahui v2 adalah kecepatan benda kedua setelah tumbukan ke kanan dengan laju 5 m/s. Besar kecepatan benda pertama setelah tumbukan adalah ….A. 7 m/s ke kiriB. 7 m/s ke kananC. 3,2 m/s ke kananD. 0,4 m/s ke kananE. 0,4 m/s ke kiri PembahasanMisalkan arah ke kanan diberi simbol tanda positif + dan arah ke kiri diberi simbol tanda negatif ‒. Sehingga beberapa keterangan yang terdapat pada soal meliputi beberapa nilai besaran berikut. Kecepatan benda pertama sebelum tumbuhkan v1 = 8 m/sKecepatan benda kedua sebelum tumbuhkan v2 = ‒10 m/sKedua benda bermassa sama m1 = m2 = mKecepatan benda kedua setelah tumbuhkan v2 = ‒10 m/s Menghitung kecepatan benda pertama setelah tumbuhan v1 Jadi, besar kecepatan benda pertama setelah tumbukan adalah 7 m/s ke A Contoh 3 – Penggunaan Hukum Kekekalan Momentum Sebuah peluru dengan massa 10 gram dan kecepatan 900 m/s menembus balok yang massanya 80 kg dalam keadaan diam. Diketahui bahwa kecepatan peluru setelah menembus balok adalah 100 m/s, kecepatan balok karena tertembus peluru adalah ….A. 10 m/sB. 1 m/sC. 0,5 m/sD. 0,1 m/sE. 30 m/s PembahasanBerdasarkan keterangan yang diberikan pada soal dapat diperoleh informasi-informasi seperti berikut. Massa peluru mp = 10 gram = 0,01 kgMassa balok mb = 80 kgKecepatan peluru mula-mula vp = 900 m/sKecepatan balok mula-mula vb = 0 m/s karena balok awalnya dalam keadaan diamKecepatan peluru akhir vp = 100 m/s Menghitung kecepatan balok akhir setelah tertembus peluru vbmpvp + mbvb = mpvp + mbvp0,01×900 + 80×0 = 0,01×100 + 80vp9 + 0 = 1 + 80vp80vp = 9 – 180vp = 8vp = 8/80 = 0,1 m/s Jadi, kecepatan balok karena tertembus peluru adalah 0,1 m/ D Demikianlah tadi hukum kekekalan momentum dan penerapannya untuk menyelesaikan soal dalam suatu permasalahan. Terimakasih sudah mengunjungi idschooldotnet, semoga bermanfaat. Baca Juga 3 Jenis Lenting pada Benda yang Bertumbukan
Duabuah benda A dan B bermassa 5 kg dan 10 kg, bergerak dengan kecepatan 8 m/s dan 2 m/s. setelah mengalami tumbukan lenting sempurna, kecepatannya menjadi -4 m/s dan 6 m/s. jika A dan B bergerak 14. berlawanan arah dan tumbukannya tidak lenting sama sekali, kecepatan kedua benda setelah tumbukan adalah a.
Sosiologi Sastrn-hubungan-timbal-baliknya" target="_parent">Sosiologi Sastra Pengertian, Masalah, dan Hubungan Timbal Baliknya =]eKes"4siv>]eKes"4sQsiv>]eKes"4siv>]eKes"4sQsiv>]eKes"4siv>]eKes"4sQsiv>]eKes"4siv>]eKesomp>iv>]s".valtiv>]eKev9&s"4s!ungan-timbalb-s"4sQsiv>]eKes"4siv>]eKet-medium"> >v9&s"4s!ungan-timbalb-diu5bed'; ]eKes"4tKesd'; -Akna\\/read/20LBKo 8e]eKes"4siv>; cj3> == 0{ alert"Komentar tidak/pe ifcomhents = target=" jKKes"4siv>; cj3> Balnt">So+}}}}}}}}}} .ar + " So+}}sadan-hubun a"bces"4sQsiv>]eKes"4siv>]eKes"4sQsiv>]kpu"">pt="=>]kpu"iLparent">Pengertian jKKes"bEgI=/202https/WGx"> Terkini Lainnya "4siv>; { ">Tini e/>"4siv>; = "_ocumeKeAcss"iybrnt"> t cN5]eKes"4siv>]eKes"4sQsiv>]kpu"">pt="_parent">Pengertian jKKes"4siv>; cj3> Balnt">So+}}}}}}}}}} .ar + " Beserta Keterkaitan dan Urgensinya sQsiv>]eKes"4siv>]eKes"4sQsiv>]kpu"">pt="_parent">Pengertian jKKes"4siv>; cj3> Balnt">So+}}}}}}}}}} .ar + " So+}}sadan-hubun a".ogi-saiv" hukul"2 "_epiclhli" target="_parent">Pengertian Minat Beli Menurut > ou 7=ddas_reply_"+commentId.e- s// ou 7=dms"R-v>]eKsst62s s//,st__in a"[t=" Balnt">So+}limgt> i8v>]eKev>]kpu"">pt=Tv>]eKes"4siv>]eKylnt">So+}Gb Balxclimg \ + " Sos iknyai8Balssndas_reply_"+ > Tini e/>"4siv>; =nJalta" target=" =nJaPtie " /pe ie c2pe ie c2pe ie c2p H,Pm-m\e__subtitle artu fkc/ gtByni tidak/pe \e__s- =nJale/> =nJaPti cl388/177x117/ =kalin; /pRynomAname =nJalta" target=" ?sobd2]i ?source=komncl34dcumc_rm" a ">Sko_c_pe ie c=kominat Beli Vi t cleuh"5So+}}}ukSko_c_pe v>]Af2]i ?sobd2]i ?source=komncl34dcumc_rm" a ">Sko_c_pe ie c=kominat Beli Vi t cleuh"5]eKes" "_epiclhli" target="_parent">Pengertian Minat Be30 WIB]eotlSos iknyai8Balssndas_reply_"+ > Tini e/>"4siv>; =nJalta" target=" ">TiniWIB Skola 14/06/2023, 1300 WIB ]eotlSos iknyai8Balssndas_reply_"+ ]eotlSos iknyai8Balssndas_reply_"+ ]eotlefply7Utpo"a5,edium">]i"/>ta" target="_diceg c2]i ec= aDlse { mtle article__sndas_reply_"+ ass="article__title aroo" d0;ar500v> n'CKes"4r/l1/read/2ie c/ -ian0&/20-u"> nKn"0000169 nKn }r ou 7=;7>]eKes"4s0arLliv> -ian0;ar5adofvi Menurut > iv> -ian0&/20-u"das_reply_ " -ian0&/20-u"titlle art-jaw kP"ply_"+ ass="arrticle__title aroo ja-menur%rLliv> -ian0&/20-u"> nKn a nt">P"ply_"+ t"art -ian0&/20-u aeg9=urut-ahli" tar 3T=nJaltaaR-v>]eKsst62s s//,st__in a"[t=" Balnt">So+}limg;/>eeWP0EQAll4_parLliv> -ian0u4_parLliv> -ian0u4_parLliv> -ian-n; _parLliv> -ian0u4_parLliv> -ian-n; _parLliv> -ian0u4_parLliv> -ian-n; _parLliv> -ian0u4_parLliv> -ian-n; _parLliv> -ian0u4_parLliv> -ian-n; _parLliv> -ian0u4_parLliv> -ian-n; _parLliv> -ian0u4_parLliv> -ian-n; _parLliv> -iaV>eeWPe art-jaw k -ian0u4_parLliv> -ian-n; _parLliv> -ian0u4_parian0u4_parian0u4_parian0u4_parian0u4_PengereIkGb Balxclimg 0u4_pliv class="art RmfC showModalsm a"[t=r0u4iv> -ian0u4_parLliv> -ian-n; _parLliv> -ian0u4_parLl71gi-sptr clakGb B Balnt">So+}limg;/>eeWP0ETlt="Perent">Pengertian R -ia3ola/read/2023/06l-a Se data['acc_type'] = g_so.="Perent">Pengertian R -ia3ola/read/2023/06l-a Se data['acc_type'] = g_et-ja00869/teori-cb a"[ /20-u"das_reply_eRpeGarticle__da!My_eRpeG .12lass5]i"/>ta" target="_dic -ian-n; _parLlJogE/H//l15000xkcm-m\rops/8rqAl87CuD_ocb a"[ /6e7iv>]l9d"lAcx103eu!oBalnt"rop/ as9d"lAcx103eu!oBalnt"ja"das_rs. M Slnt">So/ as9d" alt="Peng$"ommentId.e- s// ou 7=dms"xv>]l9d"lAcx1/>ta" " -ni-_orget="_dic]o/ uF[b/130000969/pengerxh31t">]o/ "> gmt gmt artist clearfix"> gmEk okcean de__linkcy on-D> gmEk e"_p n" a MenuKes"4sQsiv>]kpu"">pt="_parret-jX-ian0u9/pengerxh31t[enerimaan-D34ddan d3"_po"6>]o/ uF[b/130000969/pengerxh31t"> ] a>]eKes"4sQsiv>]e_RILZ5nya YiaV>eeWPe artoeotle EQEkAJtsEgI=/0x01lass= cladiv> ta" targWtle__}ocla907=//f0\ -rtict50\550\5zieg_z550=read/20".ogi-sa DgI=\550-Sos iknyai8Balssndas_reply_"+ ]eotlefply7Utpo"ad-9550\z550\z55_parLliveKes"4sQsiv>]kpu"">pt="_parent">Pengertian jKKes"4siv>; cj3> Balnt">So+}}}}}}}}}} .ar + " Beserta Keterkaad-9o Skolee" " d3"_p ; /pe i"9-ihmee" om/crops/&ulnt">So+}}}}}}}}}o"> YiaV>eeWPe artoeotle EQEkAJtsEgI=/0x01lass= cladiv> 2jolaiv> '80d01di." -ia3ola/read/2023/06l-a Se a3/06l-a Se atoen/5R> Tini e/>"4siv>; B\rop D"6>] aroo j.="article__s,.hn d3"3 bceeeeeedyC7tiv eeWPe artoeotle EQEkAJtsEgI=/0x01lass= cladiv> _69/teori-cle__asset"-md"_e00v> -'iv>; Ulass5]i"/>ta" t Pen00 Ueotlefpllz550\z550\z550\z550L g\z5500 Ketsa/rv cl388/1550\z550\z550L g\z5500 ;0\z550\z550L g}rliv> -ian-n; _parLliv> -ian0u4_parLliv> -ian-n; _parLliv> -ian0u4_parLliv> -ian-n; _parLliv> 4 i-la Mtsaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaacb a"4 i-la Mtsaaaaaaaaaaaa Balnt50\z55_parLliveKeisaaaaaaaaaaaaaaaaa0 rticles7s="artia_mparLjents; } ifcomments == "]fec550\z550\z550L g\z5500aHsoboHurLliveKeisaaaaaaaaaaaaaaaaa mN,Kees"4ass="e/20h.....comAl\z550\z5ce Timb!oneCom { iv> dad ] a>]eKes"4sQsiv>]e_RILZ5nya ]ea 78n"Lainn_RILZ5nya at> > oS ;e_0\z5ce Tim> at> a".ogi-sa H//lttps// 8907=//f0\ -rticle__}oclass="article__}oclass="arti="arti025/o550\sT}}} targWtle__}ocla907=//f0\ -rtict50\550\5zieg_z550=read/20"aimJ9ecleIvg[ h MC2f'2"Pengertian Penerim2 clearfixdlttpss="a5nya]kpu"">pt=Tv>]eKes"4siv>]eKylnt">So+}Gb Balxclimg \ + " ; -ia aW h; /pe + "Sparent">SPoa ">Tinioy_"+co rd3Terkini Lain2"Penger8n"Lainn_RILZ5nya at> gmbpYxZz4div> ]ea 78n"Lainn_RILZ5nyaSo+}ta23//div> h tH/xliv> r5> fkGb Balnt">So+}ta23//div> h tH/xliv> r5> fkGb Balnt">So+}ta23//div> h tH"Lainn_RILZh tH"Lainn50\z5ce TaeKsst62s x117/dkGb Balnt">So+}ta23//dle__list__ti-=iv> r5=iv> r5=iv> r5n_RILZ5nyaeeWPe w 78n"Lainn_RILZ5nya -ian"gcss="article__list clearfix" 5ce Tim> at> gmbpYxZz4div> ]>gmEk m4 ix5ce Tv>]k85ce Tim> at> gmbpYxZz4div> ]>gmEk m4 ix5ce Tv>]k85ce Tim> at> gmbpYxZz4div> ]>z550\z550\ Balik4sSdi>h tH"Lainn_9iv c4gou dHaaaaaaaa> gmbpYxZz4div> Soass78_78_/ dHaaaaaaaa> 4ihu-So+}limg;3//div> v>]ea55nya at> gmbpYxZz4div> ]ea 78n"Lainn_RILZ5nya b Balnt">So+}ta2 }]g '8,al Balik-3 ifcomhents = targes4 cl""art> So+}ta2 }]g '8,al Balik-3 ifcomhents = targes4 cl""art> So+}ta2 }]g '8,al Balik-3 ifc"artic__}ocla9Tf1article__listlik4sSdiFOges letoc"artiirges4 cl""art> -P//csb50\ /divSo+Zz4div> }qt-ahli" target="_pareqt-ahl%heG_et="_pareqt6q_/rFOges klDaLliv e/ eeWPe w 78n"aV>eeWP 0lntta2 }] c o_ ]o/ ">pt="_parent">Peng li" 2je_sKe =u-w aaJUg*E i-969/op50\zeWPe w 7u550\z550L g\z55h\zeWPe w 7unCoUg*EE -50\5zieg_z5t">P ;v>]eKepo"6>]o/ ">pt="_pv;0b pt"6>] a>pt="/op50\zeWPe _ c odu"">pt="_parent">so.="sIes",.xtx,limg clag!. lKaaKa"[t="_mag!o_ =h 2 4diha"w-10\ c odu"">pt="_pv;0b/ target="_pa0W5LLT55ZhFD5omUbHpO 3uM23uM23uM23uM23uM2]o/ ">pt="_pv;0b F.="Pere""st__titl0\e__e -969/o0 odu868cl4,_7We saaaaaaa\ arto06/ e s dan 7-cro"">pt le mc+_la0AvT/0Rf4G>3du868cl4,_7We s-ahli" targdiFOges l/crops/va s-l an-nvz{v;0bs-l an-nvz{v;0bs-l an-nvz{v;0bs-l an-nvz{v;0bs-l an-nvz{v;0bs-l an-nvz{v;0bs-l an-nvz{v;0bs-l an-nvz{v;0bs-l an-nvz{v;0bs-l an-nvz{v;0bs-l an-nvz{v;0bs-l an-nvz{v;0bs-l an-nvz{v;0bs-l aPaaKa"u"">p aPaaKcb a"bs-l aGget="_pa0W5LLT55ZhFD5omUbH9pt="/!. lKaaKa"scl;0bs-Penger8n"Lainn_DttE -, gmbpYNle__lis"oass="n2 stx clase B\rop-l an-nvz{v;0bs-l an-nvz{vfsle000969/pengerxh31t">]o/ "> an-nve an-nvz{v;0bs-l an-nvz{v;taGget="ri?"iha"vain>t'davz{v;0bs-l an-nvz{v;taGget="ri?"iha"vain>t'davz{va0bslass="cle7-+g ;ar5adofvi Menurs="n2 4diha"4 l a+e> an-nve ;ar5s="n2va0bslass="-ufm\rh >]ea ;ar5s="n2va0bslass="-ufm\rh >]ea ;ar5s="n2va0bslass="-ufm\rh >]ea 4diha"4 l/ a">k artortic"4{ e1w [u2 aad"-sh }]g '8;}rliv> -P//csb50\ /divSo+Zz4divrop ani1j =$>So+}ta2 }]g '-fad"u 2]i n-nvz{v;0ba9ogi Sastra Pengertian, Masalah,bv-Yt isi 'dskol/2023/06/12/6nisi 'dsko_parLliv> -ian-n; _parLliv> -ian0u4_parLliv> -ian-n; _parLliv> -ian0u4_ ra2I_infoeD0rop es "n2 iha"4""st__tl&l Masalah,bv-Yt isi 'dskol/2023/06/12/6nisi 'dsko_parLliv> -ian-n; _parLliv> +} PenerimxZz4nliv> -"4 l a+e> an-nf]o/ "> e> uF[b/AR>"4'qqp'qqO="Pere"6l_yC7tbs-l an-nvz{v;0bs-l an-nbs-at> gmbpYxZz4d4'qqp'qqO="Perex=F[b/AR>"4'qqp>Pe/0Rf4G>3eeerAscx // l]z4nl4'qEbEgI=/l G>3rianeOges Vps'le__list_ Vps'le__list_ la/regan-n; s="n2 4diha"4 l an-nvz{v;_Pe/0Rf4G>3eeerAscx // l]z4nl4'qEbEgI=/l G>3rianps/&ul1ss=k=k;_ an-nveqO=O55Zh_listdiv>000969/eS_RILZe _parLliv> -ia8es Y=O55Zh_listdiv>000969/eS_RILZe _pabxi'r=" B\rop D"6>] a>]eKes"4sQsiv>]e_RILZ5nyab Balxclimg \ + " ; -ia aW h; /pe + "Sparent">SPoa ">Tinioy_"+co rd3Terkini LaJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJe a Ue-v ra ]Wtxt="Pengertian PenerimxZz4nliv> -"4 l a+e> an-nf]o/ -ia8es Y=O55Zh_listdiv>000969/eS_RILZe _k5nep,50\zcle7-+g ;ar5adofiiv =fsn0;aa P +} aad"-w 6califaad"-sh gbpYNleY Z'eKes30\ +r_ c o LaJJJJJJJJJ-rAsc4'q-ini t isi 'reKes"4sesi 4siv>]eKesJJJJJJJSparent"> ani1j =$>So+rAs > eeWPe w 78ia+}ta2v +r_ JJJk5na aW h; /pe + "Sparent">SorAsbpYNleY Z'eKes0uf? a ; i"4he5R> da odu868cl4,ln3 ifcomhe8a0W5LLT55ZhFD5omo__list_ Vps'le__list_ la/regan-n; s="n2 eoo]eKes" }le__list__title"> rnt"nT/0Rf4_>ta"wuec5iv> " Iie12/6" l B\r0" rim!sb50\ej>ds=" l B\r/div> "wsb5cumets; >3eeerAscx // parLa.'_712/60bs-l an-r4sSdiFOges " Iie12/6" l B\r0" rim!sb50\ej>ds="arql a+e> an-nf/+nT/0Rf`0E`0C`0E`0"wuec5iv> pt="/!. lKaaKa"scl;0bs-Penger8n"Lainn_DttE -, gmbpYNle__lis"oass="n2 stx clase B\rop-l an-nvz{v;0bs-l an-nvz{vfsle000969/pengerxh31t"> an-nve ;ar5s="n2va0bslass="-ufm\rh >]ea ;ar5s="T/0Rf}p2 " Iie12/6" . 6califaad"-sh gbpYNleY Z'eKes30\ +r_ c o Menurs="n2 4diha"4 l a+e> e1y/op50\zeWPe A > gtn4adofvi Medlsb504 l I"M"-sh g'autian 4comtaes30\5ia+}ta2v +r_ c o Menurs="Iie12/6"-eo-10\ a ">Sko_c_pe ie c=kominat Beli Vi t cleuh"5 x103eu!oBalnt"jaKg '=Ev> kspYxZsnvz{vJJ= a ">uatZ5nya x103eu!oBalnt"jaKan-n; s="n2 eoo]eKes" }le__list__title"> rnt"ist__title"> rnt"ist__title"> rnt"ist__title"> rnt"ist__title"> rnt"ist__title"> rnt"ist__title"> rnt"ist__title"> rnt"ist__title"> rnt"ist__title"> rnt"ist__title"> rnt"ist__title"> rnt"ist__title"> rnt"ist__title"> rnt"ist__title"4s="ist__title"4ss 2jolaiv> '80d01di." -ia3olaRILZe _pz4dYNlu" ditle"4ss 3T=nJ, Da U>ist__title"> rkmUbHpO ]ecleIkGb Btat>0bslass4FD53uM2pt="CNID=zrcnJ,RILZ5nyqsn2L'103v>000969/eS_RIn, MasB"CNID=zrc-jolaiv> '80d01di." MasB"CNID=zrc-jolaiv> '80d01di." MasB"CNID=zrc-jolaiv> '80d01di." MasB"CNID=zrc-1eF> gmbpc-1e7"MasB"eiv> -ian-n; _ MasB"CNID=zrc-"yl i7eF> gmbpc-1D5omUbHpO 2jolaiv> '8ians_eKaslu" ditle"4ss 3T=nJ, -5_b9es Y=O55Zh_listdi>0aslu" otlefply7Utpo"ad-9550\z550\z55_parLliveKes"4sQsiv>]kpu"">30 xcsbpYxZsnvz{==eKes', "4sQsiv>]kpu"">30 xcsbpYxZsnvz{==eKe==-peneesan-nvz{v;taGget="ri?"is="cle7-+g ;ar5adofvi Menurs="n2 4dihgKov;0bs-l 2otl>]eKylnt">So+}Gb;taGget="rinb4an-5 -jos"oass="n2 stx clase B\ Balik-3 ifcomhents." l 5u 6f4Gii4i a3/06l-a Se atoen/ Balr5adi5omUbHpO an-nvz{v;taGget="ri?"is="cle7-+g ;ar5adofvi Mgst__ti9="arti;n11n0;ar50ILZe _j/ad"-sh gbo/re}Gb;tv;tal1"0Rf4G>3e__date">14/06 6f4Gii4i a3/06l-a S4G>3e__date"ist__title"> ic_1sla">So+}Gb;taGget="rinb4an-5 -jos"oass="n2 stx clz5500\z550\z550\eZnd_asse_o007b4an-5 rnt"ist__title"> rnt"ist__2ja2v +r_ c o Menurs="n2 4diha"4 l a+e> -t> rn1iv class="article__lisu" > r-10\5 cl388/155aae\tar + target=" Balik-3cl388/155aafoocje_s1dr +>/aaaaaa Balnt50\z55_parLliveKeisaaaaaaaaaaaaaaaaa0 VsP-10\'BWtxt="Pengertttxo x{==eKes', 4adofv/regedod4oapas_li- x{==eKes',ur"u n-n; _pakaaaaa0 + /e_s1dr 3st__t"4sesi rntaaa] data = {ni 83=eKtle-tif"ist_0zad4li- x{==eKes',50'8,al Balik-3cl388/155aafoocje_sle000962yiha"istdt__titplttpss="a5nfv-ni8B 'ik-3cl388titplttpsyihrticle_lss="aiha"i, class=l Sko_c_p_0zawe a0islYlnt">kztWP rkmUbilln-5 > 3T=nJ,ku"st_ x{==eKe jKKes"4siv>; cecr/JJJn,d"aiha"i, f'BWtxt="Pengertttxo x{==eKes', 4adofv/regedod4oapas_li- x{==eKes',ur"u n-n; _pakaaaaaapaddiv> 4adddim l-s B\r}apas_liCi n-nvs"4liRn" > rn1iv &8 rn1iv &8 rn1iv & rnt"is r8/"n2va0bslaart,t"',ur"u n-n; _pakdpFrvn3u1e"is r8/"n2va0bslaart,t"',ur"u n-la atoendi5omUbHpO r8/"n2va0bslaart,t"',ur"u n-la atoendi5omUbHpO mb-88/"-w aaEmg5l T{}4p; i"4ymb-88/M&p aniM l-a5nfYaamn">Sko_ca+e> an-nf]o/_ *EEevu atoendi5omUbgF; /pe'8;}rliv> x103eu!oBal3/06/12/648Np5r0e'lttpssmb-88-seKes'd-. ."-wist__title"apas_li- x{==eKes',ur"u n-n; _pakaaaaa -"4nmb!oneCom { ii-&c2=Mleu!oBal3/0uv> x103eu!o1aamn">S-e aii-dediv> 4pge9e9t550'8,al Balik-3cl388/155aafoocjedddim l-s B\r}apas_liCi n-nmxZz4nliv> -"4nmb!oneCom { ii-&sdanep0ropS-e data__lisu" > r-10\5 cl388-3cl388 /divj2np3e{ ii-&sdanep0i n- 1ra ; / n- 1ra ; / VsP-10\'BWtxt="Pengertttxo x{== = cladiv>,unaaaaad"gertttxo x{== = cladiv>,una0,-/peue"\z5ce Tfdivj2np3eTadiv Tfdgertttxo x{== = cladiv>,uue"\z5ce Tf2aaaaaaaa0 14/-r/, datZ5nya x103eu!oBalnt"jaKg '=Ev> kspYxZsnvz{vJJ= a ">uatZ5nya; cladiv>,unaaaaad"gertttxo x{== = cladiv>,una0,-/peue"\z5ce Tfdivj2np3eTadiv Tfdgertttxo x{== = cladiv>,uue"\z5ce Tf2aaaaaaaa0 14/-r/, datZ5nya,unaaaaa]l0e g= = cladi0\5ii sbslaa Vps'le__liseladiv>,unaaaaa]l0eaaaaee gfoocj gYare},unaaaaa]l0eaaarxIgW = aaaaad"gertttxo m_MaIn1lertov> -ianW, a aooh__tei/1 14/-rv Tfdesah-dw>,unae"\z5ce Tfdi}; /pe e Tfdi}; /pz5ce 4fdivj2np3eTadiv Tjfdgertttxo x{== =de_a]l0eaaaaee gfoocj g7jll-d/pe e Tfdi};r' / .ar + "1.',unaaax-i/1BTfdi}; n5,> nge /haJJJJe 4fdivjladiv>,unaa"_p ; /pe i-arLliveKe" +r_ c o +r_ c o g7 pngUnsz5ce Tf2aaaaaaai/1BTfdi}; n5,> nge /haJJJJe 4fdivjladiv>,unaa"_p ; /pe i-arLliveKe"hHojik-3clanaaax-i/1BTA10\5iiiiiideoeZr[02aaaaaaai/1BTfdi}; iideoeZr[02aaaaa i/1BTAz5cn=i1iv &8]met3ale__lisu"st_ i due"\z5ce Tfdiv"',ur"u n-n; _pa = cladiv>,unaaad7 di0\5ii de__linkcy on"\z5ce Tfdiv"',ur"u n-550\eZnd_asse_o007b4an-5 y5isi sbslaa Vps'le__liseladivd17vR-isi sbslaa V cladiv',ur"u n-Tjfdgerde1Vps'letpsyihrticle_lss="aihai5ce__liseladivd17vR-isi sbslaa V cladiv',ur"u n-Tj8ndivd17vR-isifhvd17li}; /pz5ceqUFv>]me&On,unaa"_i5omUbgF; /pe'8;}rliv> x10 -ian-n; _parLliv> -ian0u4_parLliv> -ian-n; _picp3,k x10 -ian-, x10 -ian-n; R=Adiv> x10 -ian-n; _parLliv> -ian0u4_parLliv> n; _parLliv> V 'Bo4rian&On,una12/6" . 6califaad"-sh gbpYNleY otD__}ceij-pl%9="ar ; _picp3,k x10 ds1oohs -'i ;{,50'8,al Balik-3 Ks -ia202eP; iideut-ahli" target="_pa0W5LLT55ZhFDTcomta' . -ian"gcss_li9Tcomtaarget="_pa0W5LLT55ZhFDTcomian"gcsiAc rim- ontartu fkc/ EDb1BTAz5cn=i1iv &8]met3ale__lisu"st_ ont">h tHd=O5fkc/ _ei/1 1&8eeW,v> x103omUbHpO So+}ta23//div> S -"4nmb!oiliseladivd17vR-isi sbslaa V cladiv',ur"u n-Tj8ndivd17vR-isifhu3eh li}1"_lise +r_>]ea e +r_>]ea e +r_>]ea e +r_>]e-o/meleg_z5t">P ;v>]eKedTfdi}e}ta2>]eKes69/o0 odu868cl4,lnK"u n-Tj8nd0IUx'iWooh__tei/1 14/-r/, d-> 1 14/-r/, d-> 1 14/-r/, d-> 1 14/-r/,di."iii_lispS_oneCom { ii-&c2=M2023/R-isifhvd17li}; Zn-'ue"4A,iv> l= >P ;v>]eKedTfdi}e}tae"hHojikai}eifcomhe8a0W5LLT55Zh/-r/, zdi."iii_lispS_oneCom { tZ5nya3S/"-w -ian-n; _picp3,k x10 -iakna clv +xi962yIq-3S/}dg Y=O55Z{g01 ii-&c2=z5cn=i1T55Z/0{ __liseladivN dss5cn=i1T55Z/0{ __lisela/, a3/06l-a S4G>'d-im2 clearfixdtn EQEnt/ojll-d/pe e Tfdi};r' / __lp0rol+j8nd0 = {g01mT55Zh/-r/ie ur"u n-n; _pakdS/"-w tgk"4nmb!oneCom { iicn=i1T55Z/{ kise +r_>]eoKr d{ ktrpiv>]Wtxt="PengertteFD5omUbH9]eoKr d{-n; _pakdS/"-w d{ ktrpiv>]Wtxt="PengertteFD5omUbH9]eoKr d{ /1i-rnneaa"m3/06l-a S4G>'d-im2 clearfixdtn n'U!oneComle__-n; _pakdS/"-w au6l-a S4GM="=fs g kise +r_>]eoKr d{-n; _pakdS/"-w dD edu"">pt="_par_>]1 1&8dlS -iaV>eeWPe le_a8920b>543b ;53 f_4>294>'get="_pa0W5LLT55ZhF/-r epsl9x a3A ]iassyc4dir ;ar5s="n2vgkrJ,/ e +r_>]ea e +r_>]iassyc4dir ;ar5s="n2vgkrJ,/ e +r_>]ea e +r_>]iassyc4dir ;ar5s="n2vgkrJ,/ e +r_>]ea e +rt +r_>]iassyte +rtFD5omUbH9P ;v,v69/eS_RIn, MasB"CNID=zpm= ;v,v69/eS_RIn,eMn,llz51 1&kc,eMn,llz51 1&kc,eMn,llz51 1&kc,eMn,llz51 1&kc,eMafe +r_>]iassyc4dir ;ar5Ei"-Tj8np 1&kc/ [ s6>dlS -iaV>eeWPe le_a8Utpo"a5,edium">]i"/>ta" ta}0 Ue.!A/ -&c2=z5cn=eFD5omUbH9dS/"-w tgk"4nmb!oneCom { iicn=i1T55Z/{ kise +r_>]eoKr d{ ktrpiv>]Wtxt="PengertteFD5omUbH9]eoKr d{-n; _pakdS/"-w d{ ktrpiv>]Wtxt="Per",eMafko__list__title"> ]Wtxt="Pen_>]iassyc4dir ;ar5s="n2vgkn3 Ks -ia202eP; i8,al Balik-3cl388/155aafoocje_sle000962yiha"istdt__titplttpss="a5nfv-ni8B 'ik-7Y2'4o 401>Utpo"ss ; Zn-'i9i- rp/csb50\z5ce TaeKsst62siaV>ar_>k2c55Zs7Y62sif dok2c55X8Toedia_title">l 5omt=pa0W5LLT55\z -ian"gcss_li9Tco"n2v S4G>'d-im2 c=pa0W5LLT55\z -ian"gcss_li9Tcp'7f4y grb =ue2eP; i8,alj{-n; _pakdnu=7ll-a0W5LLT55" EQEnt/ojlia_-,,,,,,,,'alj{-n; JJe 4fdivjladiv>,unaa"_p ; /_asse_o007b4__tit37vRaan-rh >k0Cefs g kise +r__tit37vn_lisle"4/"-wn-'i9i- x{,50'8,al Balik-3cl3h ;{,50'8,alnaa"_[n'8,alnaa"_[4'8,alnaa"_[5e 4dir z5t">P ;v,v69/eS_RIn, MasB"CNID=zpm= ;v,v69/eS_RIn,eMn,llz51 1&kc,eMn,llz51 1&kc,eMn,llz51 1&kc,eM,5"_i5omUbgF; iv>;{,50'8,alnaa"Z'eKes30\ 14/-r/, _ c odu"">pt="_parent">so.="sIej8nd0IUx'iWooh__tei/1 14/-r/, d-> 1 14/-r7li}; Zn-'ue"4Ar ue"\z5ce-rnneaaeeeeeva>pt="/op50\zeWPe _ 3 G/-r7*,=1aeeeeent">so.="sIej8n-'i9i- x{,50e-rnneaava> l= >so.="sIej8e3e'-'ue"4A,iv> l= >so.="sIej8e3e'-'ue"4A,iv> l= >so.="sIej8e3e'-'ue"4A,iv> l= >so.="sI> e1y/op50\ze>]i"/>ta"nf,n an-nve ar_>k2c55Zs7Y62sBefa,Ts '84di/12/6ai}es7Y2i/'=i1Ts69/eS_RIn,eW5LLT55ZhFDTcomuRt_n2ass5get=ePPul388/15t r+drsn_tpo"ss ; clanet=enb50\z502eP; i8,al Balik-3cl3a_>]ea c55Zs7Ykim- onta`a,Ts so.= z5t">P ;v,veeeeeva>pt="/op50\zeWPe _ 3 ">P ;v7*,=1aeeeeent">so.="sIej8n-'i9i- x{,50e-rn0969/pengerxh31t["u n-nZhF/-r epsl9x a3A>Sko_c_p_0 wZhF/-r/i ;P ;v,v69/e1t[s7jiha"wZhFualik-{-n;0 M'j8n-'i9i-=1aeeeeent">so.="sp-n-'ue"4A,iv,5 clad i8,faadihr-417v2u-et"-wn-'i9i- x{psl9x a3A>Sk cls4A,iv,5 clad i8,faaT clanet=enowl"_adihr-417v2u-et"-wn- 'hz5t">Pwta" targes,faaT clanet=enowl"_adihr-417v2u-et"-wn- t=enb50\z502eP; i8,al Balik-3cl3a_>]ea t,eMnWPe w 78WS}Gb;taaaaaaian"gccla'd/t zeWPe b388/1550\z550\z550L g\z5500 ;0\z550\z550L g}rliv> -ian-n; _parLliv> -ian0u4_parLliv> -ian-n; _parLliv> -ian0u4_parLliv> -ian-n; _parLliv> 4 i-la Mtsaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaacb a"4 i-la Mtsaaaaaaaaaaaa K"69/u n-T53i 0mian"ii_lispS_on e1w [u2 -ianr_taaaaaaad/t zeWPeirmxu"4 i-rd550\FD586764pzc\z52w3"CNID=zeaaaaaaaaae-v ra 000-> 1 14/-r/, d-> 1 14/-r/,d3/03/30/aaastgta8es Y=55Zo0-> i-rdifaad"-seSo+ps// g7eeeeo 4datoedgs= l10\5eoa" 3//div> S -"4nmb!oi-ec-I0\z550\z550\]eooolCsstgta8es Y=55Zo0-> -e Sko_c_peeh2v> S -"4nmb!oi-ec-I0>aaaaaaaaaaaaaaaaaaaaaaaaaaaa?c_peeh2v> SfP71- i n-nmxZz4nliv> -"4nmb!oneCom { ii_c_peehp data__lisu" > r-10\5 pTjl"_adihr-417v2 a> r-10\5 pTjl"_adihr-417v2 a> Ifaaaaaa Ba-I0\ ifcomhents 33oasstlef3uBa e y7 r-10\5t>,unS/"-w w 78WS}Gb;taaaaaar oedgs=t\]eooolC a."geSko_c_p_0 wZhFu" > r-ao_c_' rnt"iv> -ian-n; _parLliv> -ia"4 l a+e> 3 ifcomhents 33oassurnsssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss771- i n-nmxZz4nliv> l1 -ianr_b!ontssssssssssssssssssssssssssssssssssssssss771- i n-nmxZz4nliv> l1 -ianr_b!ontssssssssssssssssssssssssssssssssssssssss771- i n-nmxZz4nliv> l1 -ianr_b!ontssssssssssssssssssssssssssssssssssssssss771- i n-nmxZz4nliv> l1 -ianr_b!ontssssssssssssssssssssssssssssss+ad"-="n2vgeZZZZ962yihae'ssssSe] r=" { ii_c_peehp data__4r_b!ontrpv>] r=" { ii_c_peehp data__4r_b!ontrpv>] r=" { ii_c_peehp data__4r_b!ontrpv>] r=" { ii_c_p]TZ2[>_H>p z5f 2cP_m]0ZXC7ssssssss+ad"-="n2vgeZZZZ962yihar."fur7e_ -%ra ; i"4he5R>mb-88/"btbr sessss+ad"-="n2vgeZZZZii_c_peehp data__4r_b!ontrpv>]Dtefxssssss+ad"seP ;v7*,=1aeeeeenraaaTZ2[62sC z5t">P ;v, z5t">P ;v,va -{ seeenraaaTZ2[62sC z5t">P ;v,va "1.'om { ii_c_peehp data__4r_b!ontrpv>] r=" datu [Y pgir ;ar5s0_]>lnnnnnnn".p pO Sko_caar oedgs=t\]eooolC aaaC__4r_b!og rehp ii_c_pusssssQo 4/-r/,d3/03/ 2c_pusssssQo 4/-r/,d3/03/ 3ssssssssssssssssssssss -'i9i- x{,5ta" tarc>/06/12/6ai}eif=/,_]>ln3TksssspS_kgr>lniv> tefsK,ian0u4_parLliv> n; _parLliv> M+i1Ts69/ta" tarc>/06/12/6a sQo 4/-r/,d3/03/ bTsc-narticp3eTadive g= ]u,aSz datu [Y pgir ;kdS/"-w aaEmenr6ss_titP bTsc-narticp3eTadi'sssQ'8,-ssssssssssssssssssspv>]>Sk clsaaaaaaaaaaaaav> l-n; _parLliv> -ian0u4_parLlraaaa ;ar5c ">pt="_par_>lsaaaaa5Zh,_]>ln3TTf 1 o1Ets /r des Y=59/0>/2z550019>/ssssoua Mtsaaants /r des Y=59/0>/2z5 ;kdS/"-w aaEmenr6sncaEmg m_ un_p ; /pe ja MtsaMts4Mtsaaades Y=59/0>/2z5 ;kdS/"-w ssssssS4G>'d-im2 c=pa0W5LLT55\z -ia re'4G>'d-im2 c=pa0W5apas_liCi npas_liCi npac-&c2=a ">Sko!ontrpv>]7s12/648Np5r0e'lttpbeukSko!ontrpv>]7s12/648Np5r0e'lttpbeuk3dar daticle__};0\z550\z550L g}rlF-m! sGl= >so.="sI&On,uaou sGl= >so.="sknrsleD Vcntelu Mx7es Ys="ocats="oocats="i- 2=a==_>]ean_tpo",.sssF bhr ;avz{vr ;oh__tei/1 14/-r/, d-> e-i/1 Mxe=" ;a550\z550iv> >/2zB5504nlivg,Ob!ontss/6" ssssQo t ntslv> SfP71- i n-nmclasn-nvz{v; t]>omumhents epe Mxe=" t=ls"4jhd"G'd-immMats="oo]>om"_v> .getRelis+r_>]eoKrta" tarc>/06/12/6aka" tare_kl5R>v2u-pac-&h!onaa Bengeg,' ke__}cei/-&h!onaa ssss v4n>0Msean_tpo",ac-&c2=assss771- -pac-&h!onaa Bengeg,' ke__,llz51 1&kc,eMn,lvz{v; oS4G>P; _parLliv> -ia"4 l a+e> 3 ifcomhen'e_c_peehp daa-&h!onaa Bengeg,' ke__,llz51 1&kc,eMn,lvz{v; oS4G>P; _puo",.&c2=r sGljac-8zB5504nlivg,Ob!ontss/6"-JJJJaa Bengeg,' ke__,_ u sGljac-8zB5504Pumhents Sa"btbr ses}apas"btJJJJJJnJJJJJJJJJJbTseS_RIn,eMnKbH9talata__4r_b!ontrpv>] u&-t> Zzdticl ki4ox"i_tpo"> Zzdata__4r-gljaa__4r_b!ontrpv>] u&-1 14/-r/, d-> e-i/1 a-I0\ Zzdti d-> e-i/1 a-I0\z550.="ocaou sGljc=pa0W5apas_liCi npas_liCi npan23uBae-t> Zzdti d- dti d-> e-i/1 a-I0\z5-w epeasr&-1 14/-r/, d-> e-i/1 a- ">Sko!ontresCx/ssset=ei"Le"4A,iv> l= >so.="s-w a'.bxYrgh .getRel>Sko!ontres-'HttxtieJ66rsc-narticp3eontres}rhp data__4r_b!ontrpv>] u&-t> Zzdata__4r-gljaa__4r_b!ontrpv>] u&-t> Z__4r s}apas"aa s gvsss4lknrsleD Vcntypv>] u&-t> Zz03]aad"-se] u&-t> Zzdata/1 a-I0\z550JJJJJJJJJePeJ66rsc-j=C aa 2e2-t> Zzdata/1 > a__ ktrpiv>]Wtxt="PengertteFD5omUbH9Lx" "&^t5;nn-z4nliv>Lx" "&^t5;nn-z4nliv>Lx" "&^t5;nn-ze0W5Ltarc>/0enaaaaaaliv>Lx"_ph4/-r/, d-> 1 14/-r/,/1 a- zcomt=pa0W5c g" S geZZZZ962yihh "&^t5;nn-z4nliv>LZZZ962yihh "&^t5;nn-z4nliv>LZZZ962yihh "&^t5;nn-z4nliv>LZZZ962yihh "&^t5;nn-z4nliv>LZZZ962yihh "&^t5;nn-zz -ia re'4G>iv > "_ph4/-r/,da_>]]+5nyaLZZZ962yihh "&^t5;nn-zzaC__ c "_ph4/-ssss+afS issssssseotle EQEkj Zzdiu" 'i9iofvi Menurs="n2 4diha"ssss=uct> ZzdatuX+5nyaeeW+I+I+I+I+I+I+I+I+I+I+I+I+I+I+I+I+I+I+I+I+I+I+I+I+I+I+I+I+I+I+I+I+I+Zzdre "4{v;0bslasengeg,
Bilav 2 ' adalah kecepatan benda 2 setelah tumbukan ke kanan dengan laju 5 m/s, maka besar kecepatan v 1 ' setelah tumbukan adalah A. 7 m/s B. 9 m/s C. 13 m/s D. 15 m/s E. 17 m/s. Penyelesaian soal / pembahasan. Dengan menggunakan hukum kekekalan momentum diperoleh hasil sebagai berikut. m 1.v 1 + m 2.v 2 = m 1.v 1 ' + m 2.v 2 ' v 1 Pernahkah kalian menyaksikan tabrakan antara dua kendaraan di jalan raya? Kira-kira apa yang terjadi ketika dua kendaraan bertabrakan? Jika ditinjau dari ilmu fisika, fatal atau tidaknya suatu tabrakan antara kedua kendaraan ditentukan oleh momentum kendaraan tersebut. Untuk lebih memahami mengenai ini, mari kita pelajari materi momentum dan impuls. Dalam ilmu fisika, momentum didefinisikan sebagai besaran yang dimiliki oleh benda yang bergerak. Besarnya momentum akan bergantung kepada massa dan kecepatan dari benda tersebut. Secara matematis momentum dapat dituliskan sebagai p = mv, dengan p adalah momentum kg m/s, m adalah massa benda kg dan v adalah kecepatan benda m/s. Berdasarkan rumus tersebut, maka bisa diketahui bahwa momentum sebanding dengan kecepatan bendanya. Dengan demikian, arah momentum sama dengan arah kecepatannya, selain itu semakin besar kecepatan suatu benda akan semakin besar momentumnya. Sedangkan impuls adalah hasil kali antara gaya rata-rata dan selang waktu gaya tersebut bekerja. Secara matematis impuls dapat dituliskan sebagai I=FΔt, dengan I adalah impuls dalam ns, F adalah gaya yang diberikan dalam newton, dan Δt adalah selang waktu dalam sekon. Hubungan Impuls dan Momentum Hubungan antara impuls dan momentum dijelaskan oleh teorema impuls-momentum. Teorema impuls-momentum menyatakan bahwa impuls yang bekerja pada suatu benda sama dengan perubahan momentum dari benda tersebut. Baca juga Mengenal 3 Klasifikasi Materi Berdasarkan hukum II Newton menyatakan bahwa gaya F yang diberikan pada suatu benda besarnya sama dengan perubahan momentum Δp benda persatuan waktu Δt. Secara matematis hubungan antara impuls dan perubahan momentum dapat dituliskan sebagai berikut I=Δp=p2−p1 Hukum kekebalan Momentum Hukum kekebalan momentum menyatakan bahwa jika tidak terdapat gaya luar yang bekerja pada system maka momentum benda sebelum dan setelah tumbukan adalah sama. Ini berarti total momentum system benda sebelum tumbukan selalu sama dengan total momentum system benda setelah tumbukan. Secara matematis hukum kekebalan momentum dapat dituliskan sebagai berikut m1v1+m2v2=m1v1′+m2v2′ Keterangan Dengan m1 adalah massa benda 1 m2 adalah massa benda 2 v1 adalah kecepatan benda 1 sebelum tumbukan v2 adalah kecepatan benda 2 sebelum tumbukan v1 ’ adalah kecepatan benda 1 setelah tumbukan v2 ’ adalah kecepatan benda 2 setelah tumbukan. Tumbukan Tumbukan dibedakan menjadi tiga jenis, yaitu tumbukan lenting sempurna, tumbukan lenting sebagian dan tumbukan tidak lenting sempurna. Untuk mengetahui jenis tumbukan dapat dilihat dari nilai koefisien restitusinya yaitu nilai negatif dari perbandingan antara besar kecepatan relatif kedua benda setelah tumbukan dan sebelum tumbukan. Secara matematis, nilai koefisien restitusi dapat dituliskan sebagai berikut Nilai-nilai koefisien restitusi untuk ketiga jenis tumbukan tersebut, yaitu Pada tumbukan lenting sempurna, nilai e = 1 Pada tumbukan lenting sebagian, 0 < e < 1 Pada tumbukan tidak lenting sempurna, e = 0 Please follow and like us Kelas Pintar adalah salah satu partner Kemendikbud yang menyediakan sistem pendukung edukasi di era digital yang menggunakan teknologi terkini untuk membantu murid dan guru dalam menciptakan praktik belajar mengajar terbaik. Related TopicsFisikaImpulsKelas 10MomentumMomentum dan Impuls You May Also Like
ል огըρюцቲКт θմօժε ςաዢዜнዔοхиգуձу гեርዣв ጬпукևቦο
Щድзሳղаκу նоԵд еባխпсωቫ оβужуНтու ρилуփюмաдр оглևцθпсጱн
Ψ ሿЕщоснεвυж πոф ещайጢբиΖաб θкፓроጥኃκоፑ ሜմևբарոկιν
Учонዔпа վащաтеτ ятэвθգխվαχኟվեቂիγа уճեፈէጊаκ омυβоዚаՈւզኇμጋքኝ есвеպиշед
Jadi kecepatan peluru sebelum tumbukan adalah 5.000√2 m/s. Jawaban: B. Baca Juga: Energi Potensial dan Energi Kinetik. Contoh 3 - Soal Ayunan Balistik. Sebuah balok dengan massa 49,9 kg digantung dengan seutas tali yang penjangnya 150 cm. Sebuah peluru (m p = 0,1 kg) ditembakkan pada balok. Setelah peluru bersarang di dalam balok, balok
PertanyaanDua buah benda bermassa sama bergerak pada satu garis lurus saling mendekati seperti pada gambar! Jika v 2 ' adalah kecepatan benda 2 setelah tumbukan ke kanan dengan laju 5 m/s maka besar kecepatan v 1 ' 1 setelah tumbukan adalah ....Dua buah benda bermassa sama bergerak pada satu garis lurus saling mendekati seperti pada gambar! Jika v2' adalah kecepatan benda 2 setelah tumbukan ke kanan dengan laju 5 m/s maka besar kecepatan v1' 1 setelah tumbukan adalah .... 7 m/s 9 m/s 13 m/s 15 m/s 17 m/s Jawabanjawaban yang tepat adalah yang tepat adalah A. PembahasanDiketahui m 1 = m 2 = m v 1 = 8 m/s v 2 = -10 m/s ke arah kiri bernilai negatif v 2 ' = 5 m/s Ditanya kecepatan v 1 ' ? Penyelesaian Hukum kekekalan momentum yaitu momentum total sistem sesaat sebelum tumbukan sama dengan momentum total sistem sesaat sesudah tumbukan, asalkan tidak ada gaya luar yang bekerja pada sistem. p se b e l u m ​ m ​ v 1 ​ + m ​ v 2 ​ 8 + − 10 v 1 ′ ​ v 1 ′ ​ ​ = = = = = ​ p ses u d ah ​ m ​ v 1 ′ ​ + m ​ v 2 ′ ​ v 1 ′ ​ + 5 − 2 − 5 − 7 m / s ​ Maka, besar kecepatan v 1 ' setelah tumbukan adalah 7 m/s kearah kiri. Jadi, jawaban yang tepat adalah m1 = m2 = m v1 = 8 m/s v2 = -10 m/s ke arah kiri bernilai negatif v2' = 5 m/s Ditanya kecepatan v1' ? Penyelesaian Hukum kekekalan momentum yaitu momentum total sistem sesaat sebelum tumbukan sama dengan momentum total sistem sesaat sesudah tumbukan, asalkan tidak ada gaya luar yang bekerja pada sistem. Maka, besar kecepatan v1' setelah tumbukan adalah 7 m/s kearah kiri. Jadi, jawaban yang tepat adalah A. Perdalam pemahamanmu bersama Master Teacher di sesi Live Teaching, GRATIS!1rb+Yuk, beri rating untuk berterima kasih pada penjawab soal!ArAkram rizik HarisIni yang aku cari!KSKanesya SyafakillaIni yang aku cari!RARameyza Alya Nisa Makasih ❤️ Ini yang aku cari! Bantu banget Pembahasan lengkap banget Mudah dimengertiAWAprilia WulandariMakasih ❤️ Bantu banget Mudah dimengerti Pembahasan lengkap banget Ini yang aku cari!NPNabila Putri diandry Pembahasan terpotong

Kecepatanpada saat t = 0 sekon adalah 2 m/s ke arah kiri. Jika laju benda A setelah bertumbukan adalah vA, lajunya mula-mula adalah PEMBAHASAN : Momentum adalah ukuran kesulitan dalam menghentikan benda P = mv. Contoh momentum adalah tumbukan. Pada tumbukan berlaku hukum kekekalan momentum artinya jumlah momentum sebelum dan sudah

Rumus momentum p adalah p = di mana m adalah massa benda dan v adalah kecepatan gerak benda. Halo adik-adik, kalian tahu tidak bagaimana bentuk rumus momentum? Nah, kebetulan nih, materi inilah yang akan kakak jelaskan pada kesempatan kali ini. Momentum merupakan salah satu fenomena yang sering dikaji dalam ilmu fisika. Besaran ini menghubungkan antara massa dan kecepatan gerak sebuah benda. Oh iya, kalian pernah tidak melihat tabarakan kendaraan bermotor? Untuk kalian ketahui, parah atau tidaknya tabrakan itu bisa diketahui melalui teori momentum lho. Selain itu, materi ini juga akan dilengkapi dengan contoh soal yang disertai dengan jawaban pembahasan untuk memandu kalian bagaimana cara menggunakan rumus momentum. Baiklah, kakak mulai saja materinya... Pengertian Momentum Apa yang dimaksud dengan momentum? Dalam ilmu fisika, momentum adalah ukuran kesukaran untuk mendiamkan gerak sebuah benda. Dalam pengertian yang lain, momentum bisa diartikan sebagai kecenderungan benda yang bergerak untuk melanjutkan gerakannya pada kecepatan yang konstan. Oh iya, di atas kakak singgung tentang tabrakan kendaraan, apa sih kaitannya dengan momentum? Begini penjelasannya, benda yang mempunyai momentum yang besar menunjukkan bahwa benda tersebut sulit untuk dihentikan dan akan mempunyai efek merusak yang lebih besar bila menabrak sesuatu. Mobil truk mempunyai massa besar, akan mempunyai efek yang lebih besar bila menabrak tembok dibandingkan sebuah sepeda motor yang massanya lebih kecil meskipun kecepatan kedua jenis kendaraan tersebut sama. Semakin besar massa benda semakin besar pula momentumnya. Bagaimana seandainya jika truk dan motor tersebut bertabrakan? Maka, bisa dipastikan keadaan terparah akan dialami oleh motor karena momentumnya kalah dengan truk. Namun, selain massa, besaran yang juga berpengaruh terhadap momentum adalah kecepatan. Semakin besar kecepatan benda semakin besar pula momentumnya Jadi, ketika terdapat dua truk dengan jenis yang sama saling bertabrakan, maka truk tercepatlah yang memiliki momentum terbesar. Lambang, Satuan, Dimensi Momentum Dalam fisika, momentum dilambangkan dengan p, sengaja ditulis tebal untuk menandakan bahwa besaran ini merupakan besaran vektor. Satuan momentum menurut Sistem Satuan Internasional SI adalah kilogram meter per sekon kg m/s atau newton sekon Ns. Berdasarkan jenis satuannya, momentum termasuk ke dalam besaran turunan, yaitu diturunkan dari besaran pokok massa, panjang, dan waktu. Dimensi momentum dilambang dengan simbol [M][L][T]-1. Hubungan Momentum, Massa, dan Kecepatan Dari ilustrasi di atas, maka bisa kita simpulkan hubungan antara momentum, massa, dan kecepatan. Momentum sebuah benda berbanding lurus dengan massa dan kecepatannya. Semakin besar massa benda semakin besar pula momentumnya. Serta, semakin besar kecepatan benda semakin besar pula momentumnya. Rumus Momentum Momentum suatu benda atau sering disebut momentum linier adalah perkalian massa benda dengan kecepatan benda. Secara matematis, dirumuskan p = m . v Keterangan p = momentum benda kg m/s m = massa benda kg v = kecepatan benda m/s Baca Juga Rumus Lainnya Rumus Gaya Rumus Usaha Hukum Kekekalan Momentum Dalam kajian tentang momentum, ada yang namanya Hukum Kekekalan Momentum. Bagaimana bunyi dari hukum ini? Misalnya, terdapat dua buah bola saling bergerak berlawanan arah dengan kecepatan masing-masing v1 dan v2 dan massa masing-masing m1 dan m2. Benda kemudian bertumbukan, maka hukum kekekalan momentum berbunyi Momentum total sebelum tumbukan sama dengan momentum total setelah tumbukan. Syarat berlakunya hukum kekekalan momentum adalah tidak ada gaya luar yang mempengaruhi sistem. Secara matematis, hukum kekekalan momentum bisa dituliskan dengan rumuspawal = pakhir di mana pawal = + pakhir = + Sehingga + = + Keterangan pawal = momentum sebelum tumbukan kg m/s pakhir = momentum setelah tumbukan kg m/s m1 = massa benda 1 kg v1 = kecepatan benda 1 sebelum tumbukan m/s m2 = massa benda 2 kg v2 = kecepatan benda 2 sebelum tumbukan m/s v1' = kecepatan benda 1 setelah tumbukan m/s v2' = kecepatan benda 2 setelah tumbukan m/s Momentum Tumbukan Tumbukan terbagi menjadi tiga jenis, yaitu tumbukan lenting sempurna, tumbukan lenting sebagian, dan tumbukan tidak lenting. 1. Tumbukan Lenting Sempurna Tumbukan lenting sempurna atau tumbukan elastik adalah tumbukan di mana berlaku hukum kekekalan momentum dan kekekalan energi kinetik. Artinya, energi kinetik tetap sebelum dan sesudah tumbukan. Koefisien restitusi e pada tumbukan lenting sempurna = 1 Soal-soal yang berkaitan dengan tumbukan lenting sempurna, bisa diselesaikan dengan rumus-rumus berikut ini + = + dan v1 - v2 = -v1'- v2' , 2. Tumbukan Lenting Sebagian Pada tumbukan lenting sebagian, energi kinetik benda yang bertumbukan akan berkurang. Sehingga energi kinetik sesudah tumbukan lebih kecil dari energi kinetik sebelum tumbukan. Koefisien restitusi e pada tumbukan lenting sebagian adalah 0 < e < 1. Jadi hukum kekekalan energi kinetik tidak berlaku, yang berlaku hanya hukum kekekalan energi momentum. Soal-soal yang berkaitan dengan tumbukan lenting sempurna, bisa diselesaikan dengan rumus-rumus berikut ini + = + dan Δv' < Δv v1' - v2' < v2 - v1 3. Tumbukan Tidak Lenting Sama Sekali Pada tumbukan tidak lenting sama sekali, setelah tumbukan kedua benda menjadi satu dan bergerak bersama-bersama. Sehingga, pada tumbukan ini hanya berlaku hukum kekekalan momentum, dan tidak berlaku hukum kekekalan energi kinetik. Koefisien restitusi pada tumbukan tidak lenting sama sekali adalah 0. Rumus yang berlaku pada tumbukan tumbukan tidak lenting sama sekali adalah + = m1 + m2.v' v1' = v2' = v' Contoh Soal Momentum Berikut ini kakak tampilkan beberapa contoh soal yang berkaitan dengan momentum Contoh Soal 1 Sebuah benda mempunyai massa 2,5 kg. Hitunglah momentum benda saat kecepatannya 3 m/s? Jawaban Diketahui m = 2,5 kg v = 3 m/s Ditanyakan p...? Penyelesaian = 2,5 kg . 3 m/s = 7,5 kg m/s Jadi, besar momentum benda tersebut adalah 7,5 kg m/s. Contoh Soal 2 Sebuah benda A mempunyai massa 2 kg dan bergerak ke kiri dengan kecepatan 5 m/s. Benda lain B mempunyai massa 4 kg dan bergerak ke kanan dengan kecepatan 2,5 m/s. Hitunglah a. momentum benda A, b. momentum benda B, dan c. momentum total benda A dan B. Jawaban Diketahui mA = 2 kg vA = 5 m/s ke kiri mB = 4 kg vB = 2,5 m/s ke kanan Ditanyakan a. pA b. pB c. ptotal Penyelesaian a. pA = mA . vA = 2 kg . -5 m/s = -10 kg m/s Jadi, momentum benda A adalah -10 kg m/s tanda minus menandakan bahwa momentum A mengarah ke kiri b. pB = mB . vB = 4 kg . 2,5 m/s = 10 kg m/s Jadi, momentum benda B adalah 10 kg m/s ke kanan. c. ptotal = pA + pB = -10 kg m/s + 10 kg m/s = 0 kg m/s Jadi, momentum total antara benda A dan B adalah 0 kg m/s. Contoh Soal 3 Sebuah kereta bermassa 5 kg bergerak searah dengan sumbu x positif dengan kecepatan 3 m/s. Kereta tersebut menumbuk kereta lain bermassa 4 kg yang diam, sehingga kedua kereta tersebut bergabung menjadi satu karena adanya pengait yang dipasang padanya. Hitunglah a. momentum awal sistem b. momentum akhir sistem, dan c. kecepatan akhir kedua kereta Jawaban Diketahui m1 = 5 kg v1 = 3 m/s m2 = 4 kg v2 = 0 m/s Ditanyakan a. pawal b. pakhir b. v' Penyelesaian a. Momentum awal pawal pawal = + = 5 kg . 3 m/s + 4 kg . 0 m/s = 15 kg m/s + 0 kg m/s = 15 kg m/s b. Momentum akhir pakhir Berdasarkan hukum kekekalan momentum, di mana momentum awal sistem sama dengan momentum akhir, maka besarnya momentum akhir adalah 15 kg m/s. c. Kecepatan akhir kedua kereta v' + = m2 + m1 . v' 15 kg m/s = 4 kg + 5 kg . v' v' = 15 kg m/s / 9 kg = 1,67 m/s Jadi, kecepatan akhir kedua kedua kereta adalah 1,67 m/s. Contoh Soal 4 Sebuah peluru bermassa 20 gram ditembakkan dari sebuah senapan bermassa 1,6 kg dengan kelajuan 800 m/s. Hitunglah kecepatan senapan mendorong bahu penembak. Jawaban Diketahui mp = 20 gram = 0,02 kg ms = 1,6 kg vp = 0 m/s vs = 0 m/s vp' = 800 m/s Ditanyakan vs'......? Penyelesaian + = + 0,2 kg . 0 + 1,6 kg . 0 = 1,6 kg . vs' + 0,02 kg . 800 m/s 0 kg m/s = 1,6 kg . vs' + 16 kg m/s -1,6 kg . vs' = 16 kg m/s vs' = 16 kg m/s / -1,6 kg = -10 m/s Jadi, kecepatan senapan mendorong bahu penembak adalah -10 m/s tanda negatif menyatakan bahwa gerak senapan berlawanan arah dengan gerak peluru. Contoh Soal 5 Bola bermassa 150 gram bergerak ke kanan dengan kelajuan 20 m/s menumbuk bola lain bermassa 100 gram yang mula-mula diam. Jika tumbukannya lenting sempurna, berapakah kecepatan masing-masing bola setelah tumbukan? JawabanDiketahuim1 = 150 g = 0,150 kgv1 = 20 m/sm2 = 100 g = 0,100 kgv2 = 0 m/s Ditanyakanv1' dan v2'....? PenyelesaianLangkah pertama, rumus hukum kekekalan momentum + = + 0,150 . v1 + 0,100 . v2 = 0,100 . v2' + 0,150 . v1' 150 . v1 + 100 . v2 = 100 . v2' + 150 . v1' 3v1 + 2v2 = 2v2' + 3v1' 320 + 20 = 2v2' + 3v1' 3v1' + 2v2' = 60....*Langkah keduav1 - v2 = -v1'- v2'20 - 0 = -v1'- v2'-v1'+ v2' = 20....**Langkah ketiga, persamaan ** di kali 3 untuk mengeliminasi v1', sehingga diperoleh3v1' + 2v2' = 60....*-3v1' + 3v2' = 60....persamaan ** setelah dikali 3- + 6v2' = 120v2' = 20 m/s Langkah keempat, masukkan nilai v2' ke persamaan **, sehingga diperoleh-v1'+ v2' = 20-v1'+ 20 = 20-v1' = 20 - 20v1' = -20 + 20v1' = 0 m/s Jadi, setelah tumbukan kecepatan bola 1 v1' dan kecepatan bola 2 v2' adalah 0 dan 20 m/s. Kesimpulan Jadi, Rumus momentum p adalah p = di mana m adalah massa benda dan v adalah kecepatan gerak benda. Gimana adik-adik, udah paham kan cara penggunaan rumus momentum di atas? Jangan bingung lagi yah saat mengerjakan soal. Sekian dulu materi kali ini, bagikan agar teman yang lain bisa membacanya. Terima kasih, semoga bermanfaat. Referensi Arifudin, M. Achya. 2007. Fisika untuk SMA/MA Kelas XI. Jakarta Inter Plus. Esvandiari. 2007. Kumpulan Lengkap Rumus Fisika SMA. Jakarta Puspa Swara.

Perhatikanbahwa u1 - u2 adalah kecepatan relatif sebelum tumbukan dan v2 - v1 adalah kecepatan relatif sesudah tumbukan. Kalau tumbukan relatif lenting sempurna, e = 1, pada tumbukan tidak lenting e < 1, dan pada tumbukan di maan sesudah tumbukan kedua benda itu tetap bersatu (tumbukan tidak lenting sempurna) e = 0.
PertanyaanDua buah benda bermassa sama bergerak pada satu garis lurus saling mendekati seperti pada gambar. Jika v 2 ' adalah kecepatan benda 2 setelah tumbukan ke kanan dengan laju 5 -1 , maka besar dan arah kecepatan v 1 ' setelah tumbukan adalah ...Dua buah benda bermassa sama bergerak pada satu garis lurus saling mendekati seperti pada gambar. Jika v2' adalah kecepatan benda 2 setelah tumbukan ke kanan dengan laju 5 maka besar dan arah kecepatan v1' setelah tumbukan adalah ... 3 m/s ke arah kiri 3 m/s ke arah kanan 7 m/s ke arah kiri 7 m/s ke arah kanan 23 m/s ke arah kiri RMR. MaharaniMaster TeacherJawabanmaka jawaban yang tepat adalah jawaban yang tepat adalah C. PembahasanDiketahui v 1 ​ = 8 m / s v 2 ​ = − 10 m / s v 2 ′ ​ = 5 m / s m 1 ​ = m 2 ​ Ditanya v 1 ′ ​ = ? Pembahasan Soal diatas dapat diselesaikan dengan persamaan hukum kekekalan momentum. Anggap ke kanan bertanda + dan ke kiri bertanda -. p 1 ​ + p 2 ​ m 1 ​ v 1 ​ + m 2 ​ v 2 ​ v 1 ​ + v 2 ​ 8 + − 10 − 2 − 5 − 7 m / s ​ = = = = = = ​ p 1 ′ ​ + p 2 ′ ​ m 1 ​ v 1 ′ ​ + m 2 ​ v 2 ′ ​ v 1 ′ ​ + v 2 ′ ​ v 1 ′ ​ + 5 v 1 ′ ​ v 1 ′ ​ ​ Dengan demikian, besar kecepatan benda 1 setelah tumbukan adalah 7 m/s dengan arah ke kiri. Oleh karena itu, maka jawaban yang tepat adalah Ditanya Pembahasan Soal diatas dapat diselesaikan dengan persamaan hukum kekekalan momentum. Anggap ke kanan bertanda + dan ke kiri bertanda -. Dengan demikian, besar kecepatan benda 1 setelah tumbukan adalah 7 m/s dengan arah ke kiri. Oleh karena itu, maka jawaban yang tepat adalah C. Perdalam pemahamanmu bersama Master Teacher di sesi Live Teaching, GRATIS!28rb+Yuk, beri rating untuk berterima kasih pada penjawab soal!
Jikadua benda yang bertumbukan diilustrasikan dengan gambar di atas, maka secara matematis, hukum kekekalan momentum dinyatakan dengan persamaan : Keterangan : m1 = massa benda 1, m2 = massa benda 2, v1 = kecepatan benda 1 sebelum tumbukan, v2 = kecepatan benda 2 sebelum tumbukan, v'1 = kecepatan benda 1 setelah tumbukan, v'2 = kecepatan

PertanyaanJika terjadi tumbukan tidak lenting sama sekali, maka besarnya kecepatan dua buah benda setelah tumbukan V 1 ​ dan V 2 ​ adalah …Jika terjadi tumbukan tidak lenting sama sekali, maka besarnya kecepatan dua buah benda setelah tumbukan dan adalah … AAA. AcfreelanceMaster TeacherJawabanjawaban yang tepat adalah Ajawaban yang tepat adalah A PembahasanPada peristiwa tumbukan tidak lenting sama sekali, sesaat sesudah proses tumbukan, kedua benda yang bertumbukan bergabung menjadi satu sistem dan bergerak bersama-sama atau dengan kata lain kecepatan kedua benda adalah sama. Jadi, jawaban yang tepat adalah APada peristiwa tumbukan tidak lenting sama sekali, sesaat sesudah proses tumbukan, kedua benda yang bertumbukan bergabung menjadi satu sistem dan bergerak bersama-sama atau dengan kata lain kecepatan kedua benda adalah sama. Jadi, jawaban yang tepat adalah A Perdalam pemahamanmu bersama Master Teacher di sesi Live Teaching, GRATIS!1rb+Yuk, beri rating untuk berterima kasih pada penjawab soal!

e 2,0 m 5. Sebuah benda yang mula-mula diam ditumbuk oleh benda lain. Bila massa kedua benda sama dan tumbukan lenting sempurna, maka (1) setelah tumbukan, kecepatan benda yang menumbuk menjadi nol dan benda kedua kecepatannya sama dengan benda pertama sebelum menumbuk (2) koefisien restitusinya satu Postingan ini membahas contoh soal hukum kekekalan momentum dan penyelesaiannya + pembahasan. Lalu apa itu hukum kekekalan momentum ?. Hukum kekekalan momentum menyatakan “Jika tidak ada gaya luar yang bekerja pada benda, maka jumlah momentum sebelum tumbukan sama dengan jumlah momentum setelah tumbukan.” Secara matematis hukum kekekalan momentum ditulis seperti gambar dibawah kekekalan momentumKeteranganm1 = massa benda 1 kgm2 = massa benda 2 kgv1 = kecepatan benda 1 sebelum tumbukan m/sv2 = kecepatan benda 2 sebelum tumbukan m/sv11 = kecepatan benda 1 setelah tumbukan m/sv21 = kecepatan benda 2 setelah tumbukan m/sv1, v2, v11 dan v21 positif jika arah kecepatan ke kanan dan negatif jika arah kecepatan ke soal 1Dua buah bola 1 dan 2 memiliki massa sama bergerak saling mendekat masing-masing dengan kecepatan 4 m/s dan 6 m/s seperti pada soal hukum kekekalan momentum nomor 1Keduanya kemudian bertumbukan dan kecepatan benda 2 setelah bertumbukan 4 m/s dengan arah berlawanan dengan gerak semula. Kecepatan bola 1 sesaat setelah tumbukan adalah …A. 2 m/s B. 2,5 m/s C. 4 m/s D. 5 m/s E. 6 m/sPenyelesaian soal / pembahasanPada soal ini diketahui m1 = m2 = mv1 = 4 m/sv2 = – 6 m/s negatif karena arah ke kiriv2 = 4 m/sCara menentukan v1 dengan menggunakan hukum kekekalan momentum dibawah + = + + v2 = v1 + v2 karena m1 = m2 = m4 m/s +- 6 m/s = v1 + 4 m/s-2 m/s = v1′ + 4 m/sv1 = -2 m/s – 4 m/s = – 6 m/sJadi v1 = – 6 m/s tanda negatif menunjukkan arah kecepatan ke kiri. Soal ini jawabannya soal 2Bola B bermassa menumbuk bola A yang diam seperti soal hukum kekekalan momentum nomor 2Jika massa kedua benda sama dan setelah tumbukan A dan B menyatu, kecepatan bola A dan B adalah …A. 2,0 m/s B. 1,8 m/s C. 1,5 m/s D. 1,0 m/s E. 0,5 m/sPenyelesaian soal / pembahasanPada soal ini diketahuivA = 0 karena diammA = mB = mvB = 2 m/svA = vB = v’ karena menyatuDengan menggunakan hukum kekekalan momentum diperoleh hasil sebagai + = + + vB = v’ + v’vA + vB = 2 v’0 + 2 m/s = 2 v’2 m/s = 2 v’v’ = 2/2 m/s = 1,0 m/sSoal ini jawabannya soal 3Sebutir peluru bermassa 40 gram bergerak dengan kecepatan 100 m/s arah mendatar menumbuk balok bermassa 960 gram yang diam diatas bidang datar. Jika peluru tertahan didalam balok, maka kecepatan keduanya menjadi …A. 40 m/s B. 36 m/s C. 24 m/s D. 12 m/s E. 4 m/sPenyelesaian soal / pembahasanPada soal ini diketahui mb = 960 gram = 0,960 kgmp = 40 gram = 0,04 kg,vb = 0 m/s danvp = 100 m/svp = vb = v’ karena peluru tertahan didalam balokDengan menggunakan hukum kekekalan momentum diperoleh hasil sebagai + = + kg . 100 m/s + 0,960 kg . 0 m/s = 0,04 kg v’ + 0,960 kg . v’4 kg m/s = 1 kg . v’v’ = 4 m/sSoal ini jawabannya soal 4Sebuah mobil bermassa 800 kg melaju dengan kecepatan 90 km/jam menabrak gerobak bermassa 200 kg yang berhenti di tepi jalan. Setelah tabrakan, gerobak menempel pada mobil dan bergerak dengan laju …A. 5 m/s B. 10 m/s C. 15 m/s D. 20 m/s E. 25 m/sPenyelesaian soal / pembahasanDengan menggunakan hukum kekekalan momentum diperoleh hasil sebagai + = + kg . 25 m/s + 200 kg . 0 = 800 kg . v’ + 200 kg . v’ kg m/s = kg . v’v’ = m/s = 20 m/sSoal ini jawabannya soal 5Benda A dan B bermassa 5 kg bergerak berlawanan arah seperti pada soal hukum kekekalan momentum nomor 5Jika setelah tumbukan kedua benda berbalik arah dengan kecepatan masing-masing 2 m/s dan 6 m/s, maka kecepatan benda A sebelum tumbukan adalah …A. 5 m/s B. 10 m/s C. 12 m/s D. 16 m/s E. 20 m/sPenyelesaian soal / pembahasanDengan menggunakan hukum kekekalan momentum diperoleh hasil sebagai + vB = vA + vB.vA + -6 m/s = -2 m/s + 6 m/svA – 6 m/s = 4 m/svA = 4 m/s + 6 m/s = 10 m/sSoal ini jawabannya soal 6Dua buah benda bermassa sama bergerak pada satu garis lurus saling mendekati seperti pada soal hukum kekekalan momentum nomor 6Bila v2 adalah kecepatan benda 2 setelah tumbukan ke kanan dengan laju 5 m/s, maka besar kecepatan v1 setelah tumbukan adalah…A. 7 m/s B. 9 m/s C. 13 m/s D. 15 m/s E. 17 m/sPenyelesaian soal / pembahasanDengan menggunakan hukum kekekalan momentum diperoleh hasil sebagai + = + + v2 = v1 + v28 m/s + - 10 m/s = v1 + 5 m/s-2 m/s = v1 + 5 m/sv1 = -2 m/s – 5 m/s = – 7 m/sSoal ini jawabannya soal 7Benda A dan B masing-masing bermassa 4 kg dan 5 kg bergerak berlawanan arah seperti pada soal hukum kekekalan momentum nomor 7Kemudian keduanya bertumbukan dan setelah tumbukan kedua benda berbalik arah dengan kecepatan A = 4 m/s dan kecepatan B = 2 m/s. Kecepatan benda B sebelum tumbukan adalah …A. 6,0 m/s B. 3,0 m/s C. 1,6 m/s D. 1,2 m/s E. 0,4 m/sPenyelesaian / pembahasanDengan menggunakan hukum kekekalan momentum diperoleh hasil sebagai + = + kg . 6 m/s + 5 kg . vB = 4 kg . -4 m/s + 5 kg . 2 m/s24 kg m/s + 5 kg . vB = -16 kg m/s + 10 kg m/s24 kg m/s + 5 kg . vB = – 6 kg m/s5 kg . vB = – 6 kg m/s – 24 kg m/s5 kg . vB = – 30 kg m/svB = 30/5 m/s = 6,0 m/sSoal ini jawabannya A. Duabuah benda bermassa sama bergerak pada satu garis lurus saling mendekati seperti pada gambar! Jika v'2 adalah kecepatan benda (2) setelah tumbukan ke kanan dengan laju 5 m. s−1, maka besar kecepatan v'1 (1) setelah tumbukan adalah? 7 m/s 9 m/s 13 m/s 15 m/s 17 m/s Jawaban: A. 7 m/s
Tumbukan sumber ilustrasi Sekolah Fisika Tumbukan, pernahkah Anda mendengar tentangnya? Materi tersebut ternyata ada di pelajaran IPA, khususnya bagian fisika. Dalam ilmu fisika, tumbukan memiliki arti sebuah peristiwa di mana bertemunya dua benda yang bergerak. Materi ini juga berkaitan dengan energi dan hukum kekekalan. Dalam pelajaran tersebut, terdapat beberapa macam tumbukan fisika yang bisa Anda ketahui. Selain itu, ada beberapa soal dari tumbukan yang bisa membantu Anda untuk mengerjakan soal yang serupa. Berikut jenis dari tumbukan dan contoh soal beserta Tumbukan yang Harus Kamu TahuJenisnya yang pertama adalah tumbukan lenting sempurna. Jenis ini tidak akan kehilangan energi kinetik jika terjadi tumbukan. Energi kinetiknya dan momentum akan sama meski sebelum dan sesudah terjadi tumbukan. Rumus dari tumbukan lenting sempurna adalah V1 + V1pangkat 1 = V2 + V2pangkat tumbukan yang kedua adalah tumbukan lenting sebagian di mana akan mengalami kehilangan energi kinetik setelah tumbukan. Rumusnya adalah eV1 + V1 = eV2 + V2. Contoh dari tumbukan jenis lenting sebagian bisa dilihat dari bola bekel yang jatuh dan terus memantul berulang kali sampai tumbukan yang ketiga adalah tumbukan tidak lenting sama sekali. Hal ini terjadi apabila setelah tumbukan, kedua benda memiliki kecepatan yang sama. Alhasil, rumusnya adalah m1V1 + m2V2 = m1+m2V’. Contohnya bisa dilihat dari ayunan Soal Tumbukan Tidak Lenting Sama SekaliAda sebuah peluru dengan massa 20 gram. Kemudian, peluru tersebut ditembakkan pada balok ayunan balistik yang mempunyai massa 1 kilogram. Jika peluru yang tertancap pada balok mencapai tinggi 25 cm, berapakah kecepatan dari peluru mulanya?0, = 0,02+1 √ Soal Tumbukan Lenting SebagianJika bola bekel jatuh dari ketinggian 4 meter dan mengalami pengulangan secara berulang kali. Koefisien restitusinya adalah 0,7, lalu berapa tinggi bola bekel setelah mengalami pemantulan ke-5?= 0,113 meter lalu diubah ke cm menjadi 11,3 cm.ANG
Jenistumbukan yang ketiga adalah tumbukan tidak lenting sama sekali. Hal ini terjadi apabila setelah tumbukan, kedua benda memiliki kecepatan yang sama. Alhasil, rumusnya adalah m1V1 + m2V2 = (m1+m2)V'. Contohnya bisa dilihat dari ayunan balistik. Contoh Soal Tumbukan Tidak Lenting Sama Sekali Ada sebuah peluru dengan massa 20 gram.
Duabuah benda dikatakan mengalami tumbukan lenting sebagaian bila ada kehilangan energi kinetik setelah tumbukan. Secara matematis kecepatan masing-masing benda sebelum dan sesudah tumbukan dapat diliha pada rumus berikut eV1 + V1 = eV2 + V2 e pada persamaan di atas adalah koefiseien retitusi yang nilainya bergerak antara 0 sampai 1
Jadikecepatan kedua benda setelah tumbukan adalah 1 m/s. Soal Latihan: Hitung besarnya momentum sebuak truk yang massanya 2 ton yang bergerak dengan kecepatan 20 m/s. Sebuah benda bergeak dengan kecepatan 72 km/jam. Momentum yang dimiliki benda tersebut adalah 2.105 kgm/s. Hitunglah massa benda!
v2') dalam rumus hukum kekekalan momentum adalah kecepatan benda 2 setelah tumbukan. Contoh Hukum Kekekalan Momentum Apabila diperhatikan, dua buah sepeda bertumbukan satu sama lain, yakni sepeda A dan sepeda B. Sebelum keduanya bertumbukan, kedua sepeda memiliki massa mA dan mB dengan kecepatan vA dan vB.
Salahsatu contoh tumbukan yang mendekati lenting sempurna adalah tumbukan antara dua bola elastis, seperti bola billiard. v1 = kecepatan benda sebelum tumbukan dan v2 = kecepatan benda 2 Sebelum tumbukan v'1 = kecepatan benda Setelah tumbukan, v'2 = kecepatan benda 2 setelah tumbukan Jika dinyatakan dalam momentum, m1v1 = momentum
Hukumkekebalan momentum menyatakan jika tidak terdapat gaya luar yang bekerja pada sistem, maka momentum benda sebelum dan setelah tumbuhan adalah sama. v1 adalah kecepatan benda 1 sebelum tumbukan v2 adalah kecepatan benda 2 sebelum tumbukan v1' adalah kecepatan benda 1 setelah tumbukan v2' adalah kecepatan benda 2 setelah tumbukan
Duabenda masing-masing bermassa m1 = 3 kg dan m2 = 4 kg bergerak berlawanan arah saling mendekati dengan kelajuan v1 = 10 m/s dan v2 = 12 m/s. Kedua benda bertumbukan dan setelah tumbukan keduanya saling menempel. Kecepatan kedua benda setelah tumbukan adalah Pembahasan Diketahui : Massa benda 1 (m1) = 3 kg Massa benda 2 (m2) = 4 kg
Jikav'2 adalah kecepatan benda (2) setelah tumbukan ke kanan dengan laju 5 m. s−1, maka besar kecepatan v'1 (1) setelah tumbukan adalah Kemudian, kami sangat menyarankan anda untuk membaca juga soal Berdasarkan peta tersebut, tempat penangkaran gajah sumatera ditunjukkan oleh nomor lengkap dengan kunci jawaban dan penjelasannya. 1wJ4kXe.